New diagnostic approaches are needed to drive progress in the field of electrocatalysis and address the challenges of developing electrocatalytic materials with superior activity, selectivity, and stability. To this end, we developed a versatile experimental setup that combines two complementary in-situ techniques for the simultaneous chemical and structural analysis of planar electrodes under electrochemical conditions: high-energy surface X-ray diffraction (HE-SXRD) and infrared reflection absorption spectroscopy (IRRAS). We tested the potential of the experimental setup by performing a model study in which we investigated the oxidation of preadsorbed CO on a Pt(111) surface as well as the oxidation of the Pt(111) electrode itself. In a single experiment, we were able to identify the adsorbates, their potential dependent adsorption geometries, the effect of the adsorbates on the surface morphology, and the structural evolution of Pt(111) during surface electro-oxidation. In a broader perspective, the combined setup has a high application potential in the field of energy conversion and storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c01777 | DOI Listing |
Chemistry
January 2025
Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.
NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.
View Article and Find Full Text PDFJ Asian Nat Prod Res
January 2025
School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China.
Three compounds, including a novel quinolizidine alkaloid, ochrocephalamine G (), were isolated from . Structural elucidation was achieved through spectroscopic analysis and electronic circular dichroism. Biological assays showed that ochrocephalamine G (100 μM) inhibited HBsAg and HBeAg by 8.
View Article and Find Full Text PDFSoft Matter
January 2025
Van 't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
Bicontinuous particle-stabilized emulsions (bijels) are unique soft materials that combine the bulk properties of two immiscible fluids into a single interconnected structure. This structure is achieved through the formation of two interwoven fluid networks, stabilized by an interfacial layer of colloidal particles. Bijels with submicron-scale domain networks can be synthesized solvent transfer-induced phase separation (STrIPS).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Dalian University of Technology, School of Chemical Engineering, No 2 Linggong Road,Ganjingzi District, 116024, Dalian, CHINA.
The Pd-catalyzed asymmetric hydrogenolysis rearrangement of allylic acetates using (s-Bu)3BHK has been described, achieving the synthesis of axially chiral alkylidene cycloalkanes with excellent enantioselectivities (up to 99% ee) and a wide substrate scope (30 examples of cyclohexanes and cyclobutanes). To the best of our knowledge, this is the first time to achieve synthesis of axially chiral olefins via asymmetric hydrogenolysis of allylic acetates. This methodology not only offers a novel synthetic pathway for non-atropisomeric axially chiral structures but also highlights the potential of asymmetric hydrogenolysis as a powerful tool in synthetic organic chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!