Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laccases have shown to be efficient biocatalysts for the removal of recalcitrant pollutants from wastewater. Thus, they catalyze the oxidation of a wide variety of organic compounds by reducing molecular oxygen to water. However, the use of free laccases holds several drawbacks such as poor reusability, high cost, low stability and sensitivity to different denaturing agents that may occur in wastewater. Such drawbacks can be circumvented by immobilizing laccase enzymes in/on solid carriers. Hence, during the last decades different approaches considering various techniques and solid carriers to immobilize laccase enzymes have been developed and tested for the removal of pollutants from wastewater. To scale up wastewater treatment bioprocesses, immobilized laccases are placed in different reactor configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.202300354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!