Integrating electric field modeling and pre-tDCS behavioral performance to predict the individual tDCS effect on visual crowding.

J Neural Eng

School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China.

Published: September 2023

Transcranial direct current stimulation (tDCS) has been broadly used to modulate brain activity with both bipolar and high-definition montages. However, tDCS effects can be highly variable. In this work, we investigated whether the variability in the tDCS effects could be predicted by integrating individualized electric field modeling and individual pre-tDCS behavioral performance.Here, we first compared the effects of bipolar tDCS and 4 × 1 high-definition tDCS (HD-tDCS) with respect to the alleviation of visual crowding, which is the inability to identify targets in the presence of nearby flankers and considered to be an essential bottleneck of object recognition and visual awareness. We instructed subjects to perform an orientation discrimination task with both isolated and crowded targets in the periphery and measured their orientation discrimination thresholds before and after receiving 20 min of bipolar tDCS, 4 × 1 HD-tDCS, or sham stimulation over the visual cortex. Individual anatomically realistic head models were constructed to simulate tDCS-induced electric field distributions and quantify tDCS focality. Finally, a multiple linear regression model that used pre-tDCS behavioral performance and tDCS focality as factors was used to predict post-tDCS behavioral performance.We found that HD-tDCS, but not bipolar tDCS, could significantly alleviate visual crowding. Moreover, the variability in the tDCS effect could be reliably predicted by subjects' pre-tDCS behavioral performance and tDCS focality. This prediction model also performed well when generalized to other two tDCS protocols with a different electrode size or a different stimulation intensity.Our study links the variability in the tDCS-induced electric field and the pre-tDCS behavioral performance in a visual crowding task to the variability in post-tDCS performance. It provides a new approach to predicting individual tDCS effects and highlights the importance of understanding the factors that determine tDCS effectiveness while developing more robust protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/acfa8cDOI Listing

Publication Analysis

Top Keywords

pre-tdcs behavioral
20
electric field
16
behavioral performance
16
visual crowding
16
tdcs
15
tdcs effects
12
bipolar tdcs
12
tdcs focality
12
field modeling
8
individual tdcs
8

Similar Publications

Reactive inhibitory control plays an important role in phenotype of different diseases/different phases of a disease. One candidate electrophysiological marker of inhibitory control is frontal alpha asymmetry (FAA). FAA reflects the relative difference in contralateral frontal brain activity.

View Article and Find Full Text PDF

Background And Aims: Impaired inhibitory control accompanied by enhanced craving is hallmark of addiction. This study investigated the effects of transcranial direct current stimulation (tDCS) on response inhibition and craving in Internet gaming disorder (IGD). We examined the brain changes after tDCS and their correlation with clinical variables.

View Article and Find Full Text PDF

The dose-response characteristics of transcranial direct current stimulation (tDCS) remain uncertain but may be related to variability in brain electric fields due to individual anatomical factors. Here, we investigated whether the electric fields influence the responses to motor cortical tDCS. In a randomized cross-over design, 21 participants underwent 10 min of anodal tDCS with 0.

View Article and Find Full Text PDF

Integrating electric field modeling and pre-tDCS behavioral performance to predict the individual tDCS effect on visual crowding.

J Neural Eng

September 2023

School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China.

Transcranial direct current stimulation (tDCS) has been broadly used to modulate brain activity with both bipolar and high-definition montages. However, tDCS effects can be highly variable. In this work, we investigated whether the variability in the tDCS effects could be predicted by integrating individualized electric field modeling and individual pre-tDCS behavioral performance.

View Article and Find Full Text PDF

Characterising stationary and dynamic effective connectivity changes in the motor network during and after tDCS.

Neuroimage

April 2023

Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; School of Psychology, University of Birmingham, Birmingham B15 2TT, UK. Electronic address:

The exact mechanisms behind the effects of transcranial direct current stimulation (tDCS) at a network level are still poorly understood, with most studies to date focusing on local (cortical) effects and changes in motor-evoked potentials or BOLD signal. Here, we explored stationary and dynamic effective connectivity across the motor network at rest in two experiments where we applied tDCS over the primary motor cortex (M1-tDCS) or the cerebellum (cb-tDCS) respectively. Two cohorts of healthy volunteers (n = 21 and n = 22) received anodal, cathodal, and sham tDCS sessions (counterbalanced) during 20 min of resting-state functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!