Metal-organic frameworks (MOFs) are emerging as promising candidates for electrochemical glucose sensing owing to their ordered channels, tunable chemistry, and atom-precision metal sites. Herein, the efficient nonenzymatic electrochemical glucose sensing is achieved by taking advantage of Ni(II)-based metal-organic frameworks (Ni(II)-MOFs) and acquiring the ever-reported fastest response time. Three Ni(II)-MOFs ({[NiL(HO)]4HO} (CTGU-33), {Ni(bib)(HL)(HO)} (CTGU-34), {Ni(phen)(HL)(HO)} (CTGU-35)) have been synthesized for the first time, which use benzene-1,2,3,4,5,6-hexacarboxylic acid (HL) as an organic ligand and introduce 1,4-bis(1-imidazoly)benzene (bib) or 1,10-phenanthroline (phen) as spatially auxiliary ligands. Bib and phen convert the coordination mode of CTGU-33, affording structural dimensions from 2D of CTGU-33 to 3D of CTGU-34 or 1D of CTGU-35. By tuning the dimension of the skeleton, CTGU-34 with 3D interconnected channels exhibits an ultrafast response of less than 0.4 s, which is superior to the existing nonenzymatic electrochemical sensors. Additionally, a low detection limit of 0.12 μM (S/N = 3) and a high sensitivity of 1705 μA mM cm are simultaneously achieved. CTGU-34 further showcases desirable anti-interference and cycling stability, which demonstrates a promising application prospect in the real-time detection of glucose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c02107 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.
View Article and Find Full Text PDFNanoscale
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
Due to their ease of synthesis and large specific surface area, Ni(OH) nanosheets have emerged as promising electrochemical sensing materials, attracting significant attention in recent years. Herein, a series of oxy-hydroxides based on Ni(OH) nanosheets, including NiO/Ni(OH)@NF and (MNi)O/Ni(OH)@NF (M = Co, Fe, or Cr), are successfully synthesized the electrochemical oxidation and incorporation strategies. Electrochemical tests demonstrate that these Ni(OH)-based oxy-hydroxides exhibit excellent electrochemical oxidation activity for glucose in alkaline electrolyte.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
Nickel-based metal-organic frameworks, denoted as three-dimensional nickel trimesic acid frameworks (3D Ni-TMAF), are gaining significant attention for their application in nonenzymatic glucose sensing due to their unique properties. Ni-MOFs possess a high surface area, tunable pore structures, and excellent electrochemical activity, which makes them ideal for facilitating electron transfer and enhancing the catalytic oxidation of glucose. This research describes a new electrochemical enzyme-mimic glucose biosensor in biological solutions that utilizes 3D nanospheres Ni-TMAF created layer-by-layer on a highly porous nickel substrate.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:
Accurate and rapid monitoring of the glucose concentration in blood is essential for the prevention and treatment of diabetes. However, existing glucose sensors still have room for improvement in terms of sensitivity, selectivity, and stability. Benefiting from the fully exposed metal sites and uniform coordination environment, single-atom catalysts (SACs) have exhibited unique electrochemical sensing performances and received extensive attention in blood glucose detection.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!