Aged male patients are more vulnerable to severe or critical symptoms of COVID-19, but the underlying mechanism remains elusive. In this study, we analyzed previously published scRNA-seq data from a large cohort of COVID-19 patients, castrated and regenerated mice, and bulk RNA-seq of a RNAi library of 400 genes, and revealed that both immunity and OXPHOS displayed cell-type-, sex-, and age-related variation in the severe or critical COVID-19 patients during disease progression, with a more prominent increase in immunity and decrease in OXPHOS in myeloid cells in the males relative to the females (60-69 years old). Male severe or critical patients above 70 years old were an exception in that the compromised negative correlation between OXPHOS and immunity in these patients was associated with its disordered transcriptional regulation. Finally, the expression levels of OXPHOS and androgens were revealed to be positively correlated, and the responses of macrophages to android fluctuation were more striking than other types of detected immune cells in the castrated mice model. Therefore, the interplay of OXPHOS and immunity displayed a cell-type-specific, age-related, and sex-biased pattern, and the underlying potential regulatory role of the hormonal milieu should not be neglected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518039PMC
http://dx.doi.org/10.1002/mco2.371DOI Listing

Publication Analysis

Top Keywords

oxphos immunity
12
covid-19 patients
12
severe critical
12
sex- age-related
8
oxphos
6
patients
6
immunity
5
unique interplay
4
interplay mitochondrial
4
mitochondrial oxidative
4

Similar Publications

Background: The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species and recently demonstrated to occur in rare instances from one human generation to the next.

Method: Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances.

View Article and Find Full Text PDF

Infectious bone defects pose significant clinical challenges due to persistent infection and impaired bone healing. Icam1 macrophages were identified as crucial and previously unrecognized regulators in the repair of bone defects, where impaired oxidative phosphorylation within this macrophage subset represents a significant barrier to effective bone regeneration. To address this challenge, dual-responsive iron-doped barium titanate (BFTO) nanoparticles were synthesized with magnetic and ultrasonic properties.

View Article and Find Full Text PDF

Immunometabolic rewiring in macrophages for periodontitis treatment nanoquercetin-mediated leverage of glycolysis and OXPHOS.

Acta Pharm Sin B

November 2024

Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.

Periodontitis is a chronic inflammatory disease marked by a dysregulated immune microenvironment, posing formidable challenges for effective treatment. The disease is characterized by an altered glucose metabolism in macrophages, specifically an increase in aerobic glycolysis, which is linked to heightened inflammatory responses. This suggests that targeting macrophage metabolism could offer a new therapeutic avenue.

View Article and Find Full Text PDF

To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centers (GCs). Among these, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by utilizing energy provided by oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!