Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mesenchymal stromal/stem cell (MSC) therapy has been thoroughly tested in preclinical animal models and holds great promise for the treatment of kidney diseases. It is becoming increasingly evident that the efficacy of MSC therapy is dependent on several factors including dosage, the tissue source of MSCs, the route of delivery and timing of administration. In a time where MSC therapy is moving from preclinical research to clinically therapeutic use, the importance of choice of delivery method, modality, and administration route increases. In this review, we provide an overview of the different MSC delivery routes used in preclinical kidney disease models, highlight the recent advances in the field, and summarize studies comparing delivery routes of MSCs to the kidney.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apm.13352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!