The analysis of highly polar pesticides is challenging due to their unique physicochemical properties, requiring specialized chromatographic techniques for their accurate and sensitive detection. Furthermore, the high level of co-extracted polar matrix components that can co-elute with the analytes can interfere with the analysis. Consequently, there is lack of pesticide monitoring data, as the European Food Safety Authority has pointed out. This article explores the overcoming of such difficulties in the analysis of these compounds. Analytical methodologies for the extraction, clean-up, and direct determination of 11 highly polar anionic pesticides, including glyphosate, glufosinate, ethephon, fosetyl-aluminium, and their related metabolites in complex food matrices such as honey and pollen by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry were successfully developed and validated. Solid-phase extraction and micro-solid-phase extraction employing strong anion exchange (SAX) cartridges were implemented for clean-up. The automation and miniaturization of SAX clean-up for these compounds were achieved for the first time. For method validation, SANTE/11312/2021 guideline was followed. Recoveries were between 70 and 120%, with RSDs below 20%. Limits of quantitation ranged from 0.005 to 0.020 mg kg. Linearity was evaluated from 0.002 to 0.200 mg kg. Matrix effects were assessed, showing medium to low signal suppression for most compounds. AMPA and glufosinate presented the highest signal suppression, but it was reduced after SAX clean-up. Analysis of real honey and pollen samples revealed the occurrence of the studied compounds in beehive products and showed the applicability of the validated methodologies for routine control of these complex samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-023-04946-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!