Objective: Na(+)/H(+) exchanger isoform 1 (NHE1), a membrane protein that regulates intracellular pH, is abundantly expressed in brain tissues. It is associated with pathophysiologies in several brain diseases. The present study aimed to investigate the effects of NHE1 on the apoptosis of primary neurons of an epilepsy model.
Methods: Primary hippocampal neurons were cultured in an Mg-free medium to establish an epilepsy cell model. Designed shNHE1 lentivirus was used to silence NHE1 level in primary neurons. Nonselective pharmacological inhibitor MDL-28170 (20 μmol/L) was used to inhibit calpain-1 protein in neurons treated with Mg-free medium. The expression levels of NHE1 and calpain-1, intracellular Ca (Ca) and H (H) levels, and the expression levels of apoptosis-related proteins Bcl-2 and Bax were detected in neurons. TUNEL staining was performed to determine apoptosis in different groups.
Results: NHE1 expression was increased in primary neurons treated with an Mg-free medium, and it was correlated with increased expression of calpain-1 and cell apoptosis. Neurons from the in vitro epilepsy model showed significantly decreased Bcl-2 protein expression and significantly increased Bax protein expression. In the presence of LV-shNHE1 and the calpain-1 inhibitor MDL-28170, the changes in the expression of apoptosis-related proteins Bcl-2 and Bax were blocked in the epileptic model, and the percentage of apoptotic neurons among neurons from the in vitro epilepsy model was significantly decreased. The increase in calpain-1 expression was suppressed by LV-shNHE1; however, the inhibition of calpain-1 did not affect NHE1 expression.
Conclusion: These results demonstrate that NHE1 participates in the promotion of neuronal apoptosis of epilepsy model in vitro through the calpain-1 pathway. Downregulation of NHE1 expression could exert a neuroprotective effect on epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2023.137494 | DOI Listing |
Sci Adv
January 2025
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Neurological disorders are a substantial global health burden, affecting millions of people worldwide. A key challenge in developing effective treatments and preventive measures is the realization of low-power wearable systems with early detection capabilities. Traditional strategies rely on machine learning algorithms, but their computational demands often exceed what miniaturized systems can provide.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA.
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death, likely stemming from seizure activity disrupting vital brain centres controlling heart and breathing function. However, understanding of SUDEP's anatomical basis and mechanisms remains limited, hampering risk evaluation and prevention strategies. Prior studies using a neuron-specific conditional knockout mouse model of SUDEP identified the primary importance of brain-driven mechanisms contributing to sudden death and cardiorespiratory dysregulation; yet, the underlying neurocircuits have not been identified.
View Article and Find Full Text PDFNeurophotonics
January 2025
Weill Cornell Medicine, Department of Neurological Surgery, New York, United States.
Significance: Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Neurology, Neurocritical Care, and Neurorehabilitation, Center for Cognitive Neuroscience, Member of European Reference Network EpiCARE, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria.
Objective: People with epilepsy (PWEs) often face difficulties in obtaining or keeping employment. To determine the views on this topic of the heads of human resources (HHRs) and occupational physicians (OCPs).
Method: Twelve HHRs and five OCPs underwent a telephone interview concerning the opportunities and limitations of job applications for PWEs.
Environ Toxicol Chem
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye.
Epilepsy, the most common neurological disorder worldwide, is characterized by sudden paroxysmal brain activity, which can be generalized or focal. Extensive research has explored various treatment strategies for this condition. Our study employed a pilocarpine (PL)-induced seizure model in zebrafish (Danio rerio) embryos and larvae to assess the effects of carbamazepine (CBZ)-loaded chitosan-coated PLGA-Zein nanoparticles (NPs) over 96 hours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!