A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of N-glycosylation on constitutive signal transduction by mutated cytokine receptor-like factor 2. | LitMetric

Effect of N-glycosylation on constitutive signal transduction by mutated cytokine receptor-like factor 2.

Biochim Biophys Acta Gen Subj

Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan. Electronic address:

Published: November 2023

Background: Cytokine receptor-like factor 2 (CRLF2) is a subunit of the receptor for thymic stromal lymphopoietin (TSLP). A somatic mutation (insEIM) in the transmembrane domains of CRLF2 has been identified in acute lymphocytic leukemia (ALL), and Glu-Ile-Met (EIM) CRLF2 induces constitutive activation of signals. However, the signaling mechanism remains unclear.

Methods: HEK293 cells were transfected with expression vectors encoding wild-type (WT), insEIM CRLF2, or their mutants which N-glycosylation site was replaced with a glutamine. Cell surface expression of CRLF2 was assessed by flow cytometry. Total CRLF2 and phosphorylated signal transducer and activator of transcription 5 (STAT5) were detected by western blotting.

Results: Three major species of CRLF2 (53-, 57- and 58-kDa) were identified. Deglycosylation analysis revealed that they were modified with complex-type and oligomannose-type glycans. The expression of both WT and EIM CRLF2 decreased in N-acetylglucosaminyltransferase (GnT)-I (MGAT1) knockout (KO) cells and slightly decreased in α1,6-fucosyltransferase (Fut8) KO cells compared to that in the control cells. In GnT-I or Fut8 KO cells, WT CRLF2 did not induce ligand-independent activation. Both WT and EIM CRLF2 contained four N-glycosylation sites. N55 of CRLF2 was required for the cell surface expression and activation by EIM CRLF2.

Conclusions: We found that N-glycosylation of CRLF2 plays crucial roles for its cell surface expression and signaling. However, N-glycan processing in the Golgi apparatus does not seem to be essential for ligand-independent activation of EIM CRLF2.

General Significance: Our studies provide a crucial role of glycosylation in the cell surface expression of receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2023.130465DOI Listing

Publication Analysis

Top Keywords

cell surface
16
surface expression
16
crlf2
12
eim crlf2
12
activation eim
12
cytokine receptor-like
8
receptor-like factor
8
fut8 cells
8
ligand-independent activation
8
expression
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!