In recent years, significant efforts have been dedicated to measuring and comprehending the impact of microplastics (MPs) in the ocean. Despite harmonization guidelines for MPs research, discrepancies persist in the applied methodologies and future challenges, mostly for the smaller fractions (< 100 μm). Whether intentional or accidental, ingesting plastic particles by zooplankton can lead to incorporating this pollutant into aquatic food chains. Therefore, zooplankton can serve as a suitable proxy tool for assessing the presence of plastic particles in ocean waters. However, reliable information is essential for conducting experimental laboratory studies on the impact of MPs ingestion by zooplankton organisms. Using zooplankton as a research tool for MPs offers numerous advantages, including similar sampling methodologies and study techniques as MPs and particle data integration over space and time. The scientific community can gain novel perspectives by merging zooplankton studies with MPs research. This review explores key aspects of using zooplankton as a tool for MPs research in water samples, encompassing various views such as particles ingestion in natural environments, particle quantification in zooplankton samples (past and future), ecotoxicological and toxicology model studies. By leveraging the potential of zooplankton research, advancements can be made in developing innovative techniques for MPs analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167329 | DOI Listing |
Environ Pollut
January 2025
School of Ecology and Environment, Anhui Normal University, Wuhu Anhui Province 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241000, Anhui, China. Electronic address:
Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments.
View Article and Find Full Text PDFSci Total Environ
January 2025
Universidade Federal do Pará, Programa de Pós-Graduação em Geologia e Geoquímica, Rua Augusto Corrêa, 1, Campus Guamá, PA 66075-110 Belém, Pará, Brazil.
The knowledge of metals concentration in upwelling areas are a concern due the higher productivity of these areas In Cabo Frio Upwelling-Downwelling System (CFUS) is high primary productivity area and has been identified as an Hg hotspot to biota in SE Brazil that has been susceptible to Hg inputs, due to growing industrialization in the region. To investigate the concentration of Hg and Se metals, as well as the trophic transfer of these metals, the present study investigated Hg and Se concentrations in 64 samples collected in net mesh of >20, >64, >150 and >300 μm, in 2012, in the region's water masses. Higher mean Hg concentrations were found in zooplankton, 0.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
Although terrestrial organic matter is known to sustain food chains, its impact on zooplankton communities in lakes within urbanized areas remains unclear. This study analyzed a comprehensive, decade-long dataset (1998-2007) that included COD, BOD, and monthly zooplankton records from Lake Taihu to assess the effects of anthropogenic organic matter. Significant spatial variations in COD and BOD were observed across different areas of Lake Taihu (p < 0.
View Article and Find Full Text PDFEcol Modell
July 2024
National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Ann Arbor, MI.
J Environ Manage
December 2024
Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 2, 10-719, Olsztyn, Poland.
Land use patterns play a critical role in shaping abiotic conditions, which in turn influence interspecies interactions within aquatic ecosystems. This study tested the hypothesis that catchment management practices significantly alter water parameters and consequently affect the dynamics, importance, and nature of relationships within the zooplankton community structure of a postglacial river (northern Poland). Zooplankton interspecies interactions were assessed using network graph modeling across four diverse catchment sections: natural (NAT), urban (URB), urban/agricultural (URB/AGR), and agricultural (AGR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!