A redox-responsive nanosystem to suppress chemoresistant lung cancer through targeting STAT3.

J Control Release

Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, Department of Respiratory Medicine, and Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Sichuan Provincial Key Laboratory of Precision Medicine, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China. Electronic address:

Published: November 2023

AI Article Synopsis

  • Cancer stem cells (CSCs) play a key role in tumor growth and treatment failure, and BBI608 effectively targets and kills these cells by inhibiting the STAT3 pathway.
  • BBI608 is enhanced for delivery using redox-responsive nanoparticles that release the drug in high glutathione environments, ensuring better bioavailability and tumor accumulation.
  • This new formulation demonstrates superior anti-tumor effects against chemoresistant non-small cell lung cancer (NSCLC) in various models, indicating its potential as an effective treatment strategy.

Article Abstract

Cancer stem cells (CSCs) have been demonstrated to be involved in tumor initiation and relapse, and the presence of CSCs in the tumor tissue often leads to therapeutic failure. BBI608 has been identified to eliminate CSCs by inhibiting signal transducer and activator of transcription 3 (STAT3). In this study, we confirm that BBI608 can efficiently suppress the proliferation and migration of non-small cell lung cancer (NSCLC) cells, and specifically kill the stemness-high population in chemoresistant NSCLC cells. To improve its bioavailability and tumor accumulation, BBI608 is successfully encapsulated into redox-responsive PEGylated branched N-(2-hydroxypropyl) methacrylamide (HPMA)-deoxy cholic acid (DA) polymeric nanoparticles (BBI608-SS-NPs). The BBI608-SS-NPs can release the drug in response to high concentrations of intracellular glutathione, and exhibit cytotoxicity against lung cancer cells and CSCs comparable to the free drug BBI608. Furthermore, the BBI608-SS-NPs preferentially accumulate in tumor sites, resulting in a superior anti-tumor efficacy in both cisplatin-resistant cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models of NSCLC. Mechanistic studies demonstrate that BBI608-SS-NPs not only directly inhibit the downstream genes of the STAT3 pathway, but also indirectly inhibit the Wnt pathway. Overall, this stimuli-responsive polymeric nanoformulation of BBI608 shows great potential in the treatment of chemoresistant NSCLC by targeting CSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.09.044DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
cells cscs
8
nsclc cells
8
chemoresistant nsclc
8
cscs
5
bbi608
5
redox-responsive nanosystem
4
nanosystem suppress
4
suppress chemoresistant
4
chemoresistant lung
4

Similar Publications

The current (and possible future) role of opioid analgesia in lung cancer surgery.

Best Pract Res Clin Anaesthesiol

March 2024

Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, Department of Anesthesia and Critical Care Medicine, 1275 York Avenue, New York, NY, 10028, USA. Electronic address:

The objectives of this minireview are two-fold. The first is to discuss the evolution of opioid analgesia in perioperative medicine in the context of thoracic non-cardiac surgery. Current standard-of-care, aiming to optimize analgesia and limit undesirable side effects, is discussed in the context of multimodal analgesia, specifically enhanced recovery after thoracic surgery pathways.

View Article and Find Full Text PDF

Robotic bronchoscopy: Evolution of advanced diagnostic technologies for pulmonary lesions.

Best Pract Res Clin Anaesthesiol

March 2024

1400 Holcombe Blvd, FC 13.2000, Houston, TX, 77030, USA. Electronic address:

Lung cancer is among one of the most commonly diagnosed malignancies and is the leading cause of cancer-related mortality in both men and women globally, with an estimated 1.8 million deaths annually. Moreover, it is also the leading cause of cancer related deaths in the United States (U.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!