Bifurcations in adaptive vascular networks: Toward model calibration.

Chaos

Centre for Mathematical Sciences, Lund University, Sölvegatan 18B, 22100 Lund, Sweden.

Published: September 2023

Transport networks are crucial for the functioning of natural and technological systems. We study a mathematical model of vascular network adaptation, where the network structure dynamically adjusts to changes in blood flow and pressure. The model is based on local feedback mechanisms that occur on different time scales in the mammalian vasculature. The cost exponent γ tunes the vessel growth in the adaptation rule, and we test the hypothesis that the cost exponent is γ=1/2 for vascular systems [D. Hu and D. Cai, Phys. Rev. Lett. 111, 138701 (2013)]. We first perform bifurcation analysis for a simple triangular network motif with a fluctuating demand and then conduct numerical simulations on network topologies extracted from perivascular networks of rodent brains. We compare the model predictions with experimental data and find that γ is closer to 1 than to 1/2 for the model to be consistent with the data. Our study, thus, aims at addressing two questions: (i) Is a specific measured flow network consistent in terms of physical reality? (ii) Is the adaptive dynamic model consistent with measured network data? We conclude that the model can capture some aspects of vascular network formation and adaptation, but also suggest some limitations and directions for future research. Our findings contribute to a general understanding of the dynamics in adaptive transport networks, which is essential for studying mammalian vasculature and developing self-organizing piping systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0160170DOI Listing

Publication Analysis

Top Keywords

transport networks
8
vascular network
8
mammalian vasculature
8
cost exponent
8
model consistent
8
model
7
network
7
bifurcations adaptive
4
vascular
4
adaptive vascular
4

Similar Publications

Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Introduction: Stroke is a leading cause of mortality and morbidity, demanding prompt and accurate identification. However, prehospital diagnosis is challenging, with up to 50% of suspected strokes having other diagnoses. A prehospital video triage (PHVT) system was piloted in Greater Manchester to improve prehospital diagnostic accuracy and appropriate conveyance decisions.

View Article and Find Full Text PDF

The rapid development of Internet of Things technology has promoted the popularization of Internet of Vehicles, and its safety and reliability have become the focus of intelligent transportation system research. Vehicle-road collaboration relies on the collaborative computing and storage resources of the vehicle on-board unit (OBU), which are usually limited. When the vehicle in the edge area needs to do computing tasks such as intelligent driving, but its own computing resources are insufficient.

View Article and Find Full Text PDF

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!