Knee osteoarthritis (KOA) is a common chronic disease in orthopedics, which brings great pain to patients' life and spirit. Therefore, it is necessary to elucidate the pathogenesis of KOA. The pathophysiology of KOA has been linked to numerous factors, including oxidative stress, apoptosis, cellular senescence, mitochondrial dysfunction, and inflammatory factors. Cellular senescence has grown in importance as a topic of study for age-related illnesses recently. KOA has also been discovered to be closely related to human aging, a process in which chondrocyte senescence may be crucial. Numerous researches have looked at the pathogenesis of KOA from the perspectives of mechanical stress abnormalities, oxidative stress, inflammatory overexpression, and mitochondrial dysfunction. Many studies have discovered that the primary pathogenesis of KOA is inflammatory overexpression and chondrocyte death brought on by an imbalance in the joint microenvironment. And abnormal mechanical stress is the initiating cause of oxidative stress, inflammation, and mitochondrial disorders. However, few findings have been reported in the literature on the relationship between these factors, especially for mechanical stress abnormalities, and chondrocyte senescence. This time, in order to better understand the pathogenesis of KOA and identify potential connections between chondrocyte senescence and these microenvironments in KOA, as well as oxidative stress, inflammatory overexpression, and mitochondrial dysfunction microenvironmental dysfunctions, we will use chondrocyte senescence as a starting point. This will allow us to develop new therapeutic approaches for KOA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.115552 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.
Osteoarthritis (OA) is an age-related degenerative joint disease, prominently influenced by the pro-inflammatory cytokine interleukin-6 (IL-6). Although elevated IL-6 levels in joint fluid are well-documented, the uneven cartilage degeneration observed in knee OA patients suggests additional underlying mechanisms. This study investigates the role of interleukin-6 receptor (IL-6R) in mediating IL-6 signaling and its contribution to OA progression.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
Background: Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
Osteoarthritis (OA) is a prevalent degenerative disease that lacks effective therapy. Oxidative stress is one of the major factors contributing to OA; however, treatments targeting oxidative stress are still lacking. In the current study, we established an oxidative stress-induced cell death model in chondrocytes and screened drugs that may suppress oxidative stress-induced cell death.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, China.
Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.
View Article and Find Full Text PDFNat Aging
January 2025
Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA.
Female individuals who are post-menopausal present with higher incidence of knee osteoarthritis (KOA) than male counterparts; however, the mechanisms underlying this disparity are unknown. The most commonly used preclinical models lack human-relevant menopausal phenotypes, which may contribute to our incomplete understanding of sex-specific differences in KOA pathogenesis. Here we chemically induced menopause in middle-aged (14-16 months) C57/BL6N female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!