A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Symmetric LINEX loss twin support vector machine for robust classification and its fast iterative algorithm. | LitMetric

Symmetric LINEX loss twin support vector machine for robust classification and its fast iterative algorithm.

Neural Netw

College of Mathematics and Systems Science, Xinjiang University, Urumuqi 830046, China; Institute of Mathematics and Physics, Xinjiang University, Urumuqi 830046, China.

Published: November 2023

Twin support vector machine (TSVM) is a practical machine learning algorithm, whereas traditional TSVM can be limited for data with outliers or noises. To address this problem, we propose a novel TSVM with the symmetric LINEX loss function (SLTSVM) for robust classification. There are several advantages of our method: (1) The performance of the proposed SLTSVM for data with outliers or noise can be improved by using the symmetric LINEX loss function. (2) The introduction of regularization term can effectively improve the generalization ability of our model. (3) An efficient iterative algorithm is developed to solve the optimization problems of our SLTSVM. (4) The convergence and time complexity of the iterative algorithm are analyzed in detail. Furthermore, our model does not involve loss function parameter, which makes our method more competitive. Experimental results on synthetic, benchmark and image datasets with label noises and feature noises demonstrate that our proposed method slightly outperforms other state-of-the-art methods on most datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.08.055DOI Listing

Publication Analysis

Top Keywords

symmetric linex
12
linex loss
12
iterative algorithm
12
loss function
12
twin support
8
support vector
8
vector machine
8
robust classification
8
data outliers
8
loss
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!