In this study, an anaerobic moving bed biofilm reactor (AnMBBR) was developed for simultaneous methanogenesis and denitrification (SMD) to treat high-strength landfill leachate for the first time. A novel strategy using biosurfactant to ameliorate the inhibition of landfill leachate on the SMD performance was proposed and the underlying mechanisms were explored comprehensively. With the help of rhamnolipids, the chemical oxygen demand (COD) removal efficiency of landfill leachate was improved from 86.0% ± 2.9% to 97.5% ± 1.6%, while methane yields increased from 50.1 mL/g-COD to 69.6 mL/g-COD, and the removal efficiency of NO-N was also slightly increased from 92.5% ± 1.9% to 95.6% ± 1.0%. The addition of rhamnolipids increased the number of live cells and enhanced the secretion of extracellular polymeric substances (EPS) and key enzyme activity, indicating that the inhibitory effect was significantly ameliorated. Methanogenic and denitrifying bacteria were enhanced by 1.6 and 1.1 times, respectively. Analysis of the microbial metabolic pathways demonstrated that landfill leachate inhibited the expression of genes involved in methanogenesis and denitrification, and that their relative abundance could be upregulated with the assistance of rhamnolipids addition. Moreover, extended Deraguin - Landau - Verwery - Oxerbeek (XDLVO) theory analysis indicated that rhamnolipids reduced the repulsive interaction between biofilms and pollutants with a 57.0% decrease in the energy barrier, and thus accelerated the adsorption and uptake of pollutants onto biofilm biomass. This finding provides a low-carbon biological treatment protocol for landfill leachate and a reliable and effective strategy for its sustainable application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120646 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!