Zein particles (ZPs) have garnered considerable interest in delivery system construction for its capacity to encapsulate hydrophobic substances. Nonetheless, the instability of ZPs is an obstacle to application. Coating carboxymethylated corn fiber gum (CMCFG) which is a modified polysaccharide molecule enriched with anionic groups on the surface of ZPs is expected to overcome this limitation. Here, we evaluated the cell viability of CMCFG to Caco-2, proving the safety of CMCFG with different substitution degree (0.42, 0.52 and 0.70) below 20 mg/mL. Furthermore, curcumin, a hydrophobic model compound, was loaded onto ZPs coated with CMCFG using ultrasonic-antisolvent method, achieving a remarkable encapsulation efficiency (91.19%) and enhanced stability and bioaccessibility. Multiple characteristic approaches, such as zeta potential, FTIR, XRD, ultraviolet absorption spectra revealed that the assembly process mainly relied on hydrophobic interactions and electrostatic interactions. This study provides novel insights into encapsulation methods for hydrophobic nutrients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.137448DOI Listing

Publication Analysis

Top Keywords

carboxymethylated corn
8
corn fiber
8
zein particles
8
ultrasonic-antisolvent two-step
4
two-step assembly
4
assembly carboxymethylated
4
fiber gum-coated
4
gum-coated zein
4
particles enhanced
4
enhanced curcumin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!