A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrating unsupervised language model with multi-view multiple sequence alignments for high-accuracy inter-chain contact prediction. | LitMetric

Accurate identification of inter-chain contacts in the protein complex is critical to determine the corresponding 3D structures and understand the biological functions. We proposed a new deep learning method, ICCPred, to deduce the inter-chain contacts from the amino acid sequences of the protein complex. This pipeline was built on the designed deep residual network architecture, integrating the pre-trained language model with three multiple sequence alignments (MSAs) from different biological views. Experimental results on 709 non-redundant benchmarking protein complexes showed that the proposed ICCPred significantly increased inter-chain contact prediction accuracy compared to the state-of-the-art approaches. Detailed data analyses showed that the significant advantage of ICCPred lies in the utilization of pre-trained transformer language models which can effectively extract the complementary co-evolution diversity from three MSAs. Meanwhile, the designed deep residual network enhances the correlation between the co-evolution diversity and the patterns of inter-chain contacts. These results demonstrated a new avenue for high-accuracy deep-learning inter-chain contact prediction that is applicable to large-scale protein-protein interaction annotations from sequence alone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107529DOI Listing

Publication Analysis

Top Keywords

inter-chain contact
12
contact prediction
12
inter-chain contacts
12
language model
8
multiple sequence
8
sequence alignments
8
protein complex
8
designed deep
8
deep residual
8
residual network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!