The most common genetic risk factors for Parkinson's disease are GBA1 mutations, encoding the lysosomal enzyme glucocerebrosidase. Patients with GBA1 mutations (GBA-PD) exhibit earlier age of onset and faster disease progression with more severe cognitive impairments, postural instability and gait problems. These GBA-PD features suggest more severe cholinergic system pathologies. PET imaging with the vesicular acetylcholine transporter ligand 18F-F-fluoroethoxybenzovesamicol (18F-FEOBV PET) provides the opportunity to investigate cholinergic changes and their relationship to clinical features in GBA-PD. The study investigated 123 newly diagnosed, treatment-naïve Parkinson's disease subjects-with confirmed presynaptic dopaminergic deficits on PET imaging. Whole-gene GBA1 sequencing of saliva samples was performed to evaluate GBA1 variants. Patients underwent extensive neuropsychological assessment of all cognitive domains, motor evaluation with the Unified Parkinson's Disease Rating Scale, brain MRI, dopaminergic PET to measure striatal-to-occipital ratios of the putamen and 18F-FEOBV PET. We investigated differences in regional cholinergic innervation between GBA-PD carriers and non-GBA1 mutation carriers (non-GBA-PD), using voxel-wise and volume of interest-based approaches. The degree of overlap between t-maps from two-sample t-test models was quantified using the Dice similarity coefficient. Seventeen (13.8%) subjects had a GBA1 mutation. No significant differences were found in clinical features and dopaminergic ratios between GBA-PD and non-GBA-PD at diagnosis. Lower 18F-FEOBV binding was found in both the GBA-PD and non-GBA-PD groups compared to controls. Dice (P < 0.05, cluster size 100) showed good overlap (0.7326) between the GBA-PD and non-GBA-PD maps. GBA-PD patients showed more widespread reduction in 18F-FEOBV binding than non-GBA-PD when compared to controls in occipital, parietal, temporal and frontal cortices (P < 0.05, FDR-corrected). In volume of interest analyses (Bonferroni corrected), the left parahippocampal gyrus was more affected in GBA-PD. De novo GBA-PD show a distinct topography of regional cholinergic terminal ligand binding. Although the Parkinson's disease groups were not distinguishable clinically, in comparison to healthy controls, GBA-PD showed more extensive cholinergic denervation compared to non-GBA-PD. A larger group is needed to validate these findings. Our results suggest that de novo GBA-PD and non-GBA-PD show differential patterns of cholinergic system changes before clinical phenotypic differences between carriers versus non-carrier groups are observable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907081 | PMC |
http://dx.doi.org/10.1093/brain/awad323 | DOI Listing |
Eur Geriatr Med
January 2025
School of Medicine, Trinity College Dublin, Dublin, Ireland.
Purpose: As the global population of older adults rises, the United Nations Decade of Healthy Ageing (2021-2030) advocates for disease prevention, management, and enhancing overall wellbeing in older adults. We reviewed the MEDLINE literature under the MeSH term "music therapy" (MT), for its role in promoting healthy ageing.
Methods: A systematic search of the MEDLINE biomedical database (Ovid) was conducted using "MT" and "Ageing" as keywords, retrieving relevant full-text studies in English.
NPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg.
Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
Distinguishing between Parkinson's disease (PD) and essential tremor (ET) can be challenging sometimes. Although positron emission tomography can confirm PD diagnosis, its application is limited by high cost and exposure to radioactive isotopes. Patients with PD exhibit loss of the dorsal nigral hyperintensity on brain magnetic resonance imaging (MRI).
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy.
Metabotropic glutamate (mGlu) receptors are candidate drug targets for therapeutic intervention in Parkinson's disease (PD). Here we focused on mGlu3, a receptor subtype involved in synaptic regulation and neuroinflammation. mGlu3 mice showed an enhanced nigro-striatal damage and microglial activation in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!