Automatic brain tumor segmentation using multi-parametric magnetic resonance imaging (mpMRI) holds substantial importance for brain diagnosis, monitoring, and therapeutic strategy planning. Given the constraints inherent to manual segmentation, adopting deep learning networks for accomplishing accurate and automated segmentation emerges as an essential advancement. In this article, we propose a modality fusion diffractive network (MFD-Net) composed of diffractive blocks and modality feature extractors for the automatic and accurate segmentation of brain tumors. The diffractive block, designed based on Fraunhofer's single-slit diffraction principle, emphasizes neighboring high-confidence feature points and suppresses low-quality or isolated feature points, enhancing the interrelation of features. Adopting a global passive reception mode overcomes the issue of fixed receptive fields. Through a self-supervised approach, the modality feature extractor effectively utilizes the inherent generalization information of each modality, enabling the main segmentation branch to focus more on multimodal fusion feature information. We apply the diffractive block on nn-UNet in the MICCAI BraTS 2022 challenge, ranked first in the pediatric population data and third in the BraTS continuous evaluation data, proving the superior generalizability of our network. We also train separately on the BraTS 2018, 2019, and 2021 datasets. Experiments demonstrate that the proposed network outperforms state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3318640DOI Listing

Publication Analysis

Top Keywords

modality fusion
8
fusion diffractive
8
diffractive network
8
brain tumor
8
modality feature
8
diffractive block
8
feature points
8
segmentation
6
diffractive
5
feature
5

Similar Publications

Cross-Modal Collaboration and Robust Feature Classifier for Open-Vocabulary 3D Object Detection.

Sensors (Basel)

January 2025

The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.

The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.

View Article and Find Full Text PDF

A Review on Face Mask Recognition.

Sensors (Basel)

January 2025

School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

This review offers a comprehensive and in-depth analysis of face mask detection and recognition technologies, emphasizing their critical role in both public health and technological advancements. Existing detection methods are systematically categorized into three primary classes: feaRture-extraction-and-classification-based approaches, object-detection-models-based methods and multi-sensor-fusion-based methods. Through a detailed comparison, their respective workflows, strengths, limitations, and applicability across different contexts are examined.

View Article and Find Full Text PDF

Dual-Modal Approach for Ship Detection: Fusing Synthetic Aperture Radar and Optical Satellite Imagery.

Sensors (Basel)

January 2025

Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

The fusion of synthetic aperture radar (SAR) and optical satellite imagery poses significant challenges for ship detection due to the distinct characteristics and noise profiles of each modality. Optical imagery provides high-resolution information but struggles in adverse weather and low-light conditions, reducing its reliability for maritime applications. In contrast, SAR imagery excels in these scenarios but is prone to noise and clutter, complicating vessel detection.

View Article and Find Full Text PDF

This review evaluates needle navigation technologies in minimally invasive cardiovascular surgery (MICS), identifying their strengths and limitations and the requirements for an ideal needle navigation system that features optimal guidance and easy adoption in clinical practice. A systematic search of PubMed, Web of Science, and IEEE databases up until June 2024 identified original studies on needle navigation in MICS. Eligible studies were those published within the past decade and that performed MICS requiring needle navigation technologies in adult patients.

View Article and Find Full Text PDF

Objective: Spinal fusion is a commonly performed surgical procedure used to relieve pain, deformity, and instability of various spinal pathologies. Although there have been attempts to standardize spinal fusion assessment radiologically, there is currently no unified definition that also considers clinical symptomology. This review attempts to create a more holistic and standardized definition of spinal fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!