Endometrial cancer (EC) is the most common gynecological tumor. Circular RNAs are a novel type of non-coding RNA that have important regulatory functions, particularly in the pathogenic progression of cancer. In this study, we investigated the function of circCCL22, and elucidated its molecular mechanism in EC progresssion. The expression of circCCL22, miR-543 and CDC25A in EC tissues and cells were determined by qRT-PCR and western blot. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing and transwell assays were executed to assess the cell viability, proliferation, migration and invasion. Dual-luciferase report assay was utilized to investigate the interaction of miR-543 with circCCL22 and CDC25A. The role of circCCL22 in EC in vivo was investigated by xenograft assay. CircCCL22 was notably upregulated in EC tissues and cells. Functionally, circCCL22 knockdown suppressed EC cell proliferation, migration and invasion in vitro, and inhibited tumor growth in vivo. Mechanistically, circCCL22 acted as "miR-543 sponges" to regulate its targeted gene CDC25A expression in EC cells. The inhibiting effect induced by circCCL22 knockdown on EC cell proliferation, migration and invasion was greatly reversed by miR-543 inhibition or CDC25A overexpression. Our results revealed that circCCL22 regulated EC progression through targeting miR-543/CDC25A axis, and it could be a novel therapeutic target of EC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-023-00876-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!