The Pantothenate synthetase (PS) from the () holds a crucial role in the survival and robust proliferation of bacteria through its catalysis of coenzyme A and acyl carrier protein synthesis. The present study undertook the PS drug target in complex with a co-crystallized ligand and subjected it to docking and virtual screening approaches. The experimental design encompassed three discrete datasets: an active dataset featuring 136 compounds, an inactive dataset comprising 56 compounds, and a decoys dataset curated from the zinc library, comprising an extensive compilation of approximately 53,000 compounds. The compounds' binding energies were observed to be in the range of -5 to ∼-14 kcal/mol. Additionally, binding energy results were further refined through Enrichment Factor analysis (EF). EF is a new statistical approach which uses the scores obtained from docking-based virtual screening and predicts the precision of the scoring function. Remarkably, the Enrichment Factor (EF) analysis produced exceptionally favorable outcomes, attaining an EF of approximately 49% within the uppermost 1% fraction of the compound distribution. Finally, a total of eight compounds, evenly distributed between the active dataset and the decoys dataset, emerged as potent inhibitors of the Pantothenate synthetase (PS) enzyme. The analysis of inhibition constants and binding energy revealed a notable correlation, with an r-squared value () of 0.912 between the two parameters. Furthermore, the shortlisted compounds were subjected to 100 ns MD simulation to determine their stability and dynamics behavior. The decoy compounds that have been identified, exhibiting properties comparable to the active compounds, are postulated as potential candidates for targeting the Pantothenate synthetase (PS) enzyme to treat infection. Nevertheless, in the pursuit of a comprehensive investigation, it is advisable to undertake additional experimental validation as a component of the subsequent study.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2260483 | DOI Listing |
Front Pharmacol
July 2024
Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India.
Pantothenate synthetase protein plays a pivotal role in the biosynthesis of coenzyme A (CoA), which is a crucial molecule involved in a number of cellular processes including the metabolism of fatty acid, energy production, and the synthesis of various biomolecules, which is necessary for the survival of (). Therefore, inhibiting this protein could disrupt CoA synthesis, leading to the impairment of vital metabolic processes within the bacterium, ultimately inhibiting its growth and survival. This study employed molecular docking, structure-based virtual screening, and molecular dynamics (MD) simulation to identify promising phytochemical compounds targeting pantothenate synthetase for tuberculosis (TB) treatment.
View Article and Find Full Text PDFJ Biomol Struct Dyn
November 2024
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
The Pantothenate synthetase (PS) from the () holds a crucial role in the survival and robust proliferation of bacteria through its catalysis of coenzyme A and acyl carrier protein synthesis. The present study undertook the PS drug target in complex with a co-crystallized ligand and subjected it to docking and virtual screening approaches. The experimental design encompassed three discrete datasets: an active dataset featuring 136 compounds, an inactive dataset comprising 56 compounds, and a decoys dataset curated from the zinc library, comprising an extensive compilation of approximately 53,000 compounds.
View Article and Find Full Text PDFACS Synth Biol
October 2023
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
In response to a high concentration of glucose, , a microbial chassis for producing many industrial metabolites, rapidly takes up glucose using the phosphotransferase system (PTS), leading to overflow metabolism, a common phenomenon observed in many bacteria. Although overflow metabolism affects cell growth and reduces the production of many metabolites, effective strategies that reduce overflow metabolism while maintaining normal cell growth remain to be developed. Here, we used a quorum sensing (QS)-mediated circuit to tune the glucose uptake rate and thereby relieve overflow metabolism in an engineered for producing d-pantothenic acid (DPA).
View Article and Find Full Text PDFCurr Microbiol
August 2023
Kikani Lab, University of Kentucky, 201, T.H. Morgan Building, Lexington, KY, USA.
Tuberculosis is the disease which is caused due to the contagion of Mycobacterium tuberculosis. The multidrug resistance Mycobacterium tuberculosis is the main hassle in the treatment of this worldwide health threats. Pantothenate synthase is a legitimate goal for rational drug designing against Mycobacterium tuberculosis.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
August 2023
Research School of Biology, The Australian National University, Canberra, ACT, Australia. Electronic address:
Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!