Background: Extensive evidence has illustrated the promotive role of integrin binding sialoprotein (IBSP) in the progression of multiple cancers. However, little is known about the functions of IBSP in gastric cancer (GC) progression.
Aim: To investigate the mechanism underlying the regulatory effects of IBSP in GC progression, and the relationship between IBSP and cleavage and polyadenylation factor 6 (CPSF6) in this process.
Methods: The mRNA and protein expression of relevant genes were assessed through real-time quantitative polymerase chain reaction and Western blot, respectively. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell invasion and migration were evaluated by Transwell assay. Pyroptosis was measured by flow cytometry. The binding between CPSF6 and IBSP was confirmed by luciferase reporter and RNA immunoprecipitation (RIP) assays.
Results: IBSP exhibited higher expression in GC tissues and cell lines than in normal tissues and cell lines. IBSP knockdown suppressed cell proliferation, migration, and invasion but facilitated pyroptosis. In the exploration of the regulatory mechanism of IBSP, potential RNA binding proteins for IBSP were screened with catRAPID omics v2.0. The RNA-binding protein CPSF6 was selected due to its higher expression in stomach adenocarcinoma. Luciferase reporter and RIP assays revealed that CPSF6 binds to the 3'-untranslated region of IBSP and regulates its expression. Knockdown of CPSF6 inhibited cell proliferation, migration, and invasion but boosted pyroptosis. Through rescue assays, it was uncovered that the retarded GC progression mediated by CPSF6 knockdown was reversed by IBSP overexpression.
Conclusion: Our study highlighted the vital role of the CPSF6/IBSP axis in GC, suggesting that IBSP might be an effective bio-target for GC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514719 | PMC |
http://dx.doi.org/10.4251/wjgo.v15.i9.1531 | DOI Listing |
J Inflamm Res
January 2025
Department of Shandong Trauma Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250014, People's Republic of China.
Background: Posttraumatic elbow stiffness is a complex complication with two characteristics of capsular contracture and heterotopic ossification. Currently, genomic mechanisms and pathogenesis of posttraumatic elbow stiffness remain inadequately understood. This study aims to identify differentially expressed genes (DEGs) and elucidate molecular networks of posttraumatic elbow stiffness, providing novel insights into disease mechanisms at transcriptome level.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Natural selection and artificial breeding are crucial methods for developing new animal groups. The Baiyu black goats and Chuanzhong black goats are indigenous goat breeds from distinct ecological regions in Sichuan Province, with dramatically different growth and reproductivity. This study aimed to systematically elucidate the differences in production performance and genetic traits between Baiyu black goats and Chuanzhong black goats.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China; Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. Electronic address:
Bone
December 2024
Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA. Electronic address:
Bone sialoprotein (Ibsp/BSP) is a bone-associated extracellular matrix protein. Ibsp knockout (Ibsp) mice exhibit defective alveolar bone formation, mineralization, and healing. We hypothesized BSP would rescue defective alveolar bone healing in a molar extraction model in Ibsp mice.
View Article and Find Full Text PDFClin Oral Investig
December 2024
Department of Stomatology, Hangzhou First People's Hospital Affiliated to West Lake University, No. 261, Huansha Road, Shangcheng District, Hangzhou, Zhejiang, 310006, China.
Objectives: Inflammation and osteoclast activity are important in various diseases, including periodontitis and osteoporosis. Farnesoid X receptor (FXR) has been identified as a promising target for modulating these processes. This study delved into the impact of FXR agonists on inflammation and periodontal regeneration using periodontitis models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!