Upon nuclear waste canister failure and contact of spent nuclear fuel with groundwater, the UO matrix of spent fuel will interact with oxidants in the groundwater generated by water radiolysis. Bicarbonate (HCO) is often found in groundwater, and the HO induced oxidative dissolution of UO in bicarbonate solution has previously been studied under various conditions. Temperatures in the repository at the time of canister failure will differ depending on the location, yet the effect of temperature on oxidative dissolution is unknown. To investigate, the decomposition rate of HO at the UO surface and dissolution of U in bicarbonate solution (0.1, 1, 10 and 50 mM) was analysed at various temperatures (10, 25, 45 and 60 °C). At [HCO] ≥ 1 mM, the concentration of dissolved U decreased with increasing temperature. This was attributed to the formation of U-bicarbonate species at the surface and a change in the mechanism of HO decomposition from oxidative to catalytic. At 0.1 mM, no obvious correlation between temperature and U dissolution was observed, and thermodynamic calculations indicated this was due to a change in the surface species. A pathway to explain the observed dissolution behaviour of UO in bicarbonate solution as a function of temperature was proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517105 | PMC |
http://dx.doi.org/10.1039/d2ra08131h | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Council for Geoscience, Private Bag X112, Pretoria, 0001, South Africa.
One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.
View Article and Find Full Text PDFSmall
January 2025
Environment Research Institute, Shandong University, Qingdao, 266237, China.
The direct electrochemical conversion of bicarbonate solutions (i.e., captured CO) has emerged as a sustainable approach for integrating CO capture and utilization compared to the traditional independent and sequential route.
View Article and Find Full Text PDFInt J Burns Trauma
December 2024
Burn Care Center, Pakistan Institute of Medical Sciences (G-8/3), Shaheed Zulfiqar Ali Bhutto Medical University Islamabad, Pakistan.
Following severe burns, the predominant concern is significant fluid loss, for which balanced crystalloid solutions are widely recommended as the primary intravenous resuscitation fluids. However, current literature lacks a clear distinction among various buffered crystalloid types that might be most effective in the early resuscitation of burn patients. This retrospective study was conducted to identify the optimal resuscitation fluid for major burns and to assess the clinical outcomes associated with isotonic crystalloid solutions compared to hypotonic crystalloids, specifically in terms of urinary output, acid-base balance, and electrolyte stability.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
The hydrogenation of bicarbonate, a byproduct of CO captured in alkaline solutions, into formic acid (FA) using glycerol (GLY) as a hydrogen source offers a promising carbon-negative strategy for reducing CO emissions. While Pd-based catalysts are effective in this reaction, they often require high temperatures, leading to low FA yield due to strong hydrogen adsorption on Pd surfaces. In this work, metal-organic framework derived N-doped carbon encapsulated CoNi alloy nanoparticles (CoNi@NC) were prepared, acid-leached, and employed as a support to modulate the electronic structure of Pd-based catalysts.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
Electrochemical CO reduction in acidic media attracts extensive research attention due to its potential in increasing carbon efficiency. In most reports, alkali cations are introduced to suppress hydrogen evolution and to promote CO reduction. However, the mass transport of alkali cations through cation exchange membrane induces the change of electrolyte compositions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!