The genus is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in , cloning and expression strategies for the workhorse as well as the use genome mining tools for bioprospecting are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512326 | PMC |
http://dx.doi.org/10.3389/ffunb.2022.1002161 | DOI Listing |
Sci Rep
January 2025
State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
Tyrosine-protein kinase Src plays a key role in cell proliferation and growth under favorable conditions, but its overexpression and genetic mutations can lead to the progression of various inflammatory diseases. Due to the specificity and selectivity problems of previously discovered inhibitors like dasatinib and bosutinib, we employed an integrated machine learning and structure-based drug repurposing strategy to find novel, targeted, and non-toxic Src kinase inhibitors. Different machine learning models including random forest (RF), k-nearest neighbors (K-NN), decision tree, and support vector machine (SVM), were trained using already available bioactivity data of Src kinase targeting compounds.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China.
Nat Commun
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.
View Article and Find Full Text PDFNPJ Sci Food
January 2025
Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
Atherosclerosis is a primary cause of cardiovascular disease, straining healthcare systems. Dendrobium officinale, a widely used food-medicine homology, has demonstrated anti-atherosclerotic (anti-AS) properties, with other species listed in pharmacopoeias exhibiting similar effects. However, their efficacy varies, and the impact of interspecies variations on compounds and mechanisms in Dendrobium's anti-AS effects remains unclear.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd.
Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!