Parkinson's Disease (PD) is a prevalent and complex age-related neurodegenerative condition for which there are no disease-modifying treatments currently available. The pathophysiological process underlying PD remains incompletely understood but increasing evidence points to multiple system dysfunction. Interestingly, the past decade has produced evidence that exercise not only reduces signs and symptoms of PD but is also potentially neuroprotective. Characterizing the mechanistic pathways that are triggered by exercise and lead to positive outcomes will improve understanding of how to counter disease progression and symptomatology. In this review, we highlight how exercise regulates the neuroendocrine system, whose primary role is to respond to stress, maintain homeostasis and improve resilience to aging. We focus on a group of hormones - cortisol, melatonin, insulin, klotho, and vitamin D - that have been shown to associate with various non-motor symptoms of PD, such as mood, cognition, and sleep/circadian rhythm disorder. These hormones may represent important biomarkers to track in clinical trials evaluating effects of exercise in PD with the aim of providing evidence that patients can exert some behavioral-induced control over their disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514367 | PMC |
http://dx.doi.org/10.3389/fnins.2023.1228444 | DOI Listing |
NMR Biomed
February 2025
Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.
View Article and Find Full Text PDFTransl Neurodegener
December 2024
Department of Anatomy and Medical Imaging, University of Auckland, 85 Park Road, Grafton, , Auckland, 1142, New Zealand.
Background: Parkinson's disease (PD) and multiple system atrophy (MSA) are classified as α-synucleinopathies and are primarily differentiated by their clinical phenotypes. Delineating these diseases based on their specific α-synuclein (α-Syn) proteoform pathologies is crucial for accurate antemortem biomarker diagnosis. Newly identified α-Syn pathologies in PD raise questions about whether MSA exhibits a similar diversity.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Anhui Provincial Center for Neural Regeneration Technology and New Medical Materials Engineering Research, Bengbu Medical University, Bengbu 233000, China.
Objectives: To investigate the role of mitochondrial autophagy disorder caused by deletion of E3 ubiquitin ligase Parkin in neuroinflammation in a mouse model of MPTP-induced Parkinson's disease (PD).
Methods: Wild-type (WT) male C57BL/6 mice and Parkin mice were given intraperitoneal injections with MPTP or PBS for 5 consecutive days, and the changes in motor behaviors of the mice were observed using open field test. The effects of Parkin deletion on PD development and neuroinflammation were evaluated using immunofluorescence and Western blotting.
BMJ Open
December 2024
Nursing, Midwifery and Health, Northumbria University, Newcastle upon Tyne, UK.
Introduction: Pain is reported as one of the most troubling symptoms for people with Parkinson's (PwP); however, the literature exploring their lived experience of pain and how to manage it is limited. Pain affects PwP at all stages of their condition and can fluctuate and change over time. Therefore, it is pertinent to speak to PwP to understand their experiences of pain to inform the development of tailored behavioural interventions to manage pain.
View Article and Find Full Text PDFJ Neurol Sci
December 2024
Nordic Bioscience, Herlev, Denmark.
Parkinson's Disease (PD) is a progressive neurodegenerative condition, which is highly heterogeneous upon diagnosis. Brain extracellular matrix (ECM) accounts for 10-20 % of the total brain volume and is responsible for the physical organization of neuronal and glia cells. Blood-based biomarkers quantifying ECM fragments holds the potential as diagnostic and prognostic biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!