Efficient Agrobacterium-mediated transformation and genome editing of .

Front Plant Sci

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.

Published: September 2023

(L.) Gaertn. is an exceptional crop known for its remarkable health benefits, high levels of beneficial polyphenols and gluten-free properties, making it highly sought-after as a functional food. Its self-fertilisation capability and adaptability to challenging environments further contribute to its potential as a sustainable agricultural option. To harness its unique traits, genetic transformation in is crucial. In this study, we optimised the Agrobacterium-mediated transformation protocol for callus, resulting in a transformation rate of regenerated plants of approximately 20%. The protocol's effectiveness was confirmed through successful GUS staining, GFP expression, and the generation of albino plants via gene inactivation. These results validate the feasibility of genetic manipulation and highlight the potential for trait enhancement in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515086PMC
http://dx.doi.org/10.3389/fpls.2023.1270150DOI Listing

Publication Analysis

Top Keywords

agrobacterium-mediated transformation
8
efficient agrobacterium-mediated
4
transformation
4
transformation genome
4
genome editing
4
editing gaertn
4
gaertn exceptional
4
exceptional crop
4
crop remarkable
4
remarkable health
4

Similar Publications

Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae.

Transgenic Res

January 2025

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.

Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.

View Article and Find Full Text PDF

Generation and Assessment of Soybean ( (L.) Merr.) Hybrids for High-Efficiency -Mediated Transformation.

Life (Basel)

December 2024

Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, 4400 Nyíregyháza, Hungary.

The -mediated technique is widely employed for soybean transformation, but the efficiency of this method is still relatively modest, in which multiple factors are involved. Numerous chemical and physiological cues from host plants are needed for attraction and subsequent T-DNA integration into the plant genome. Susceptible genotypes may permit this attachment and integration, and the agronomically superior genotypes with susceptibility to would play an important role in increasing transformation efficiency.

View Article and Find Full Text PDF

Overexpression of apple MdNRT1.7 enhances low nitrogen tolerance via the regulation of ROS scavenging.

Int J Biol Macromol

December 2024

Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang 550025, Guizhou Province, China. Electronic address:

Article Synopsis
  • Low nitrogen stress negatively impacts crop yields, and this study focuses on the role of the nitrate transporter MdNRT1.7 in apples (Malus domestica) to understand its function in combating this stress.
  • Researchers used tobacco plants to investigate MdNRT1.7's regulation, identifying a transcription factor (MdJUB1) that inhibits its expression.
  • Results showed that overexpressing MdNRT1.7 improved nitrogen metabolism and stress tolerance in tobacco by increasing beneficial compounds and enzyme activities while decreasing harmful reactive oxygen species.
View Article and Find Full Text PDF

Agrobacterium-mediated transformation of plants often results in the integration of multiple copies of T-DNA and backbone DNA from binary vectors into the host genome. However, the interplay between T-DNA and backbone DNA remains elusive. In this study, 70.

View Article and Find Full Text PDF

The genus Flaveria has been studied extensively as a model for the evolution of C photosynthesis. Thus far, molecular analyses in this genus have been limited due to a dearth of genomic information and the lack of a rapid and efficient transformation protocol. Since their development, Agrobacterium-mediated transient transformation protocols have been instrumental in understanding many biological processes in a range of plant species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!