The human brain comprises an intricate web of connections that generate complex neural networks capable of storing and processing information. This information depends on multiple factors, including underlying network structure, connectivity, and interactions; and thus, methods to characterize neural networks typically aim to unravel and interpret a combination of these factors. Here, we present four-dimensional (4D) Shannon's entropy, a novel quantitative metric of network activity based on the Triple Correlation Uniqueness (TCU) theorem. Triple correlation, which provides a complete and unique characterization of the network, relates three nodes separated by up to four spatiotemporal lags. Here, we evaluate the 4D entropy from the spatiotemporal lag probability distribution function (PDF) of the network activity's triple correlation. Given a spike raster, we compute triple correlation by iterating over time and space. Summing the contributions to the triple correlation over each of the spatial and temporal lag combinations generates a unique 4D spatiotemporal lag distribution, from which we estimate a PDF and compute Shannon's entropy. To outline our approach, we first compute 4D Shannon's entropy from feedforward motif-class patterns in a simulated spike raster. We then apply this methodology to spiking activity recorded from rat cortical cultures to compare our results to previously published results of pairwise (2D) correlated spectral entropy over time. We find that while first- and second-order metrics of activity (spike rate and cross-correlation) show agreement with previously published results, our 4D entropy computation (which also includes third-order interactions) reveals a greater depth of underlying network organization compared to published pairwise entropy. Ultimately, because our approach is based on the TCU, we propose that 4D Shannon's entropy is a more complete tool for neural network characterization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516034PMC
http://dx.doi.org/10.1101/2023.09.15.557974DOI Listing

Publication Analysis

Top Keywords

shannon's entropy
20
triple correlation
20
entropy
9
novel quantitative
8
quantitative metric
8
complete unique
8
unique characterization
8
neural network
8
network activity
8
neural networks
8

Similar Publications

Background: Family physician program is one of the effective reforms of the health system in Iran, but despite the implementation of this program in rural areas and the passage of ten years since its implementation in two provinces of Fars and Mazandaran, its implementation has faced problems. The aim of this study is to identify and prioritize implementation solutions related to the challenges of the family physician program in Iran.

Methods: This is a qualitative study using semi-structured interviews with 22 snowball-sampled experts and managers of basic health insurers to extract problems and executive solutions through coding and data analysis using Atlas Ti software and content analysis in the first stage.

View Article and Find Full Text PDF

The mining industry in the copper belt region of Africa was initiated in the early 1900s, with copper being the main ore extracted to date. The main objectives of the present study are (1) to characterize the microbial structure, abundance, and diversity in different ecological conditions in the cupriferous city of Lubumbashi and (2) to assess the metal phytoextraction potential of , a main plant species used in tailing. Four ecologically different sites were selected.

View Article and Find Full Text PDF

Comprehensive Analysis of the Immune Response to SARS-CoV-2 Epitopes: Unveiling Potential Targets for Vaccine Development.

Biology (Basel)

January 2025

Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou University Medical College, Shantou 515041, China.

SARS-CoV-2 continues to be a major global health threat. In this study, we performed a comprehensive meta-analysis on the epitopes of SARS-CoV-2, revealing its immunological landscape. Furthermore, using Shannon entropy for sequence conservation analysis and structural network-based methods identified candidate epitopes that are highly conserved and evolutionarily constrained in SARS-CoV-2 and other zoonotic coronaviruses.

View Article and Find Full Text PDF

Shannon Entropy Computations in Navier-Stokes Flow Problems Using the Stochastic Finite Volume Method.

Entropy (Basel)

January 2025

Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, 90-924 Łódź, Poland.

The main aim of this study is to achieve the numerical solution for the Navier-Stokes equations for incompressible, non-turbulent, and subsonic fluid flows with some Gaussian physical uncertainties. The higher-order stochastic finite volume method (SFVM), implemented according to the iterative generalized stochastic perturbation technique and the Monte Carlo scheme, are engaged for this purpose. It is implemented with the aid of the polynomial bases for the pressure-velocity-temperature (PVT) solutions, for which the weighted least squares method (WLSM) algorithm is applicable.

View Article and Find Full Text PDF

This research addresses complexity in manufacturing systems from an entropic perspective for production improvement. The main objective is to develop and validate a methodology that develops an entropic metric of complexity in an integral way in production environments, through simulation and programming techniques. The methodological proposal is composed of six stages: (i) Case study, (ii) Hypothesis formulation, (iii) Discrete event simulation, (iv) Measurement of entropic complexity by applying Shannon's information theory, (v) Entropy analysis, and (vi) Statistical analysis by ANOVA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!