Recent advancements in Protein Language Models (pLMs) have enabled high-throughput analysis of proteins through primary sequence alone. At the same time, newfound evidence illustrates that codon usage bias is remarkably predictive and can even change the final structure of a protein. Here, we explore these findings by extending the traditional vocabulary of pLMs from amino acids to codons to encapsulate more information inside CoDing Sequences (CDS). We build upon traditional transfer learning techniques with a novel pipeline of token embedding matrix seeding, masked language modeling, and student-teacher knowledge distillation, called MELD. This transformed the pretrained ProtBERT into cdsBERT; a pLM with a codon vocabulary trained on a massive corpus of CDS. Interestingly, cdsBERT variants produced a highly biochemically relevant latent space, outperforming their amino acid-based counterparts on enzyme commission number prediction. Further analysis revealed that synonymous codon token embeddings moved distinctly in the embedding space, showcasing unique additions of information across broad phylogeny inside these traditionally "silent" mutations. This embedding movement correlated significantly with average usage bias across phylogeny. Future fine-tuned organism-specific codon pLMs may potentially have a more significant increase in codon usage fidelity. This work enables an exciting potential in using the codon vocabulary to improve current state-of-the-art structure and function prediction that necessitates the creation of a codon pLM foundation model alongside the addition of high-quality CDS to large-scale protein databases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516008PMC
http://dx.doi.org/10.1101/2023.09.15.558027DOI Listing

Publication Analysis

Top Keywords

protein language
8
language models
8
codon
8
codon usage
8
usage bias
8
codon vocabulary
8
cdsbert extending
4
protein
4
extending protein
4
models codon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!