Unlabelled: Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or via collateral sprouting of neighboring uninjured afferents into the denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received relatively less attention. In this study, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hind paw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following an initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated the denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by trend towards regression. Presumptive sympathetic nerve fibers also sprouted into the denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so less efficiently. Conversely, rapidly adapting Aβ fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing collateral sprouting up to 8 weeks after nerve injury. Optogenetics and behavioral assays further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury.

Significance Statement: Following nerve injury, whereas one mechanism for tissue reinnervation is regeneration of injured neurons, another, less well studied mechanism is collateral sprouting of nearby uninjured neurons. In this study, we examined collateral sprouting in denervated mouse skin and showed that it involves some, but not all neuronal subtypes. Despite such heterogeneity, a significant degree of restoration of punctate mechanical sensitivity is achieved. These findings highlight the diversity of collateral sprouting among peripheral neuron subtypes and reveal important differences between pre- and post-denervation skin that might be appealing targets for therapeutic correction to enhance functional recovery from denervation and prevent unwanted sensory phenomena such as pain or numbness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515828PMC
http://dx.doi.org/10.1101/2023.09.12.557420DOI Listing

Publication Analysis

Top Keywords

collateral sprouting
32
nerve injury
20
collateral
8
sprouting
8
nerve
8
spared nerve
8
peripheral nerve
8
regeneration injured
8
injured neurons
8
neighboring uninjured
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!