Aperiodic Modulation of Graphene Driven by Oxygen-Induced Reconstruction of Rh(110).

J Phys Chem C Nanomater Interfaces

Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.

Published: September 2023

Artificial nanostructuring of graphene has served as a platform to induce variations in its structural and electronic properties, fostering the experimental observation of a wide and fascinating phenomenology. Here, we present an approach to graphene tuning, based on Rh(110) surface reconstruction induced by oxygen atoms intercalation. The resulting nanostructured graphene has been characterized by scanning tunneling microscopy (STM) complemented by low-energy electron microscopy (LEEM), micro low-energy electron diffraction (μ-LEED), micro angle-resolved photoemission spectroscopy (μ-ARPES), and micro X-ray photoelectron spectroscopy (μ-XPS) measurements under ultrahigh vacuum (UHV) conditions at room temperature (RT). It is found that by fine-tuning the O exposure amount, a mixture of missing row surface reconstructions of the metal surface below the graphene layer can be induced. This atomic rearrangement under the graphene layer results in aperiodic patterning of the two-dimensional (2D) material. The electronic structure of the resulting nanostructured graphene is dominated by a linear dispersion of the Dirac quasiparticles, characteristic of its free-standing state but with a -doping character. The local effects of the underlying missing rows on the interfacial chemistry and on the quasiparticle scattering processes in graphene are studied using atomically resolved STM images. The possibilities offered by this nanostructuring approach, which consists in inducing surface reconstructions under graphene, could provide a novel tuning strategy for this 2D material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513088PMC
http://dx.doi.org/10.1021/acs.jpcc.3c02643DOI Listing

Publication Analysis

Top Keywords

graphene
9
nanostructured graphene
8
low-energy electron
8
surface reconstructions
8
graphene layer
8
aperiodic modulation
4
modulation graphene
4
graphene driven
4
driven oxygen-induced
4
oxygen-induced reconstruction
4

Similar Publications

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Electronic ferroelectricity in monolayer graphene moiré superlattices.

Nat Commun

December 2024

Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.

Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.

View Article and Find Full Text PDF

Laser scribed proton exchange membranes for enhanced fuel cell performance and stability.

Nat Commun

December 2024

Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Structural superlubricity (SSL), a state of ultralow friction and no wear between two solid surfaces in contact, offers a fundamental solution for reducing friction and wear. Recent studies find that the edge pinning of SSL contact dominates the friction. However, its nature remains mysterious due to the lack of direct characterizations on atomic scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!