Resistome-based surveillance identifies ESKAPE pathogens as the predominant gram-negative organisms circulating in veterinary hospitals.

Front Microbiol

Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom.

Published: September 2023

Introduction: Healthcare-associated infections (HCAIs) associated with extended-spectrum cephalosporin-resistant gram-negative (ESC-R GN) bacteria are an emerging concern in veterinary hospitals, especially in companion animal intensive care units (ICUs).

Methods: To understand the molecular epidemiology of ESC-R GN isolates in two veterinary hospitals (equine and small animal), a 6-month pilot study was performed during which fecal and environmental samples were obtained twice from selected patients, upon ICU admission and after 48 h of hospitalization. In total, 295 ESC-R GNs were analyzed using the Acuitas Resistome Test (OpGen, Maryland, US), a PCR-based assay screening for 50 antimicrobial resistance gene families encoding for production of extended-spectrum beta-lactamase (ESBLs), TEM/SHV/OXA or AmpC beta-lactamases and carbapenemases. Combining organism identification and antimicrobial susceptibility data to genotyping results, unique "Acuitas profiles" were generated that can be used for fast typing the isolates and tracking transmission events.

Results: ESKAPE GN pathogens were the most prevalent ESC-R GN isolates circulating in both the small animal and equine hospitals, consisting of complex (21.7%), (20%), (15.9%), and complex (13.6%) followed by (12.2%), most harboring a combination of genes encoding for beta-lactamases and ESBLs. Some ESKAPE genotypes showed likely intra-hospital transmission, including (two genotypes, one carrying SHV4, SHV5, and TEM7 and the other TEM1, TEM3, and TEM7 enzymes) in the equine and (SHV1, SHV5, and DHA1-positive) in the small animal ICUs, respectively. Furthermore, (carrying OXA-50), complex (OXA-51), and (CTX-M-1) genotypes were isolated across both hospitals, suggesting possible transfer mediated via movement of staff and students. Importantly, isolates carrying transmissible resistance to last-resort antimicrobials (i.e. carbapenems) were identified within the hospital environments, consisting of three environmental spp. harboring and one clinical with .

Conclusion: We describe the widespread occurrence of ESKAPE gram-negative organisms in veterinary ICU patients and hospital environments. Findings from this project provide baseline data on the epidemiology of ESKAPE pathogens in veterinary settings, which can inform infection control policies to aid in patient management and prevent transmission of nosocomial infections associated with these pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513425PMC
http://dx.doi.org/10.3389/fmicb.2023.1252216DOI Listing

Publication Analysis

Top Keywords

eskape pathogens
12
veterinary hospitals
12
small animal
12
gram-negative organisms
8
esc-r isolates
8
hospital environments
8
eskape
5
veterinary
5
hospitals
5
resistome-based surveillance
4

Similar Publications

Klebsiella pneumoniae is a leading cause of anti-microbial resistance in healthcare-associated infections that have posed a severe threat to neonatal and wider community. The escalating crises of antibiotic resistance have compelled researchers to explore an innovative arsenal beginning from natural resources to chemical modifications in order to overcome the ever-increasing resistance issues. The present review highlights the drug discovery efforts with a special focus on cutting-edge strategies in the hunt for potential drug candidates against MDR/XDR Klebsiella pneumoniae.

View Article and Find Full Text PDF

A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway.

Sci Adv

December 2024

Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.

The covalently attached cofactor biotin plays pivotal roles in central metabolism. The top-priority ESKAPE-type pathogens, and , constitute a public health challenge of global concern. Despite the fact that the late step of biotin synthesis is a validated anti-ESKAPE drug target, the primary stage remains fragmentarily understood.

View Article and Find Full Text PDF

Objectives: Pseudomonas aeruginosa, identified as an ESKAPE pathogen, contributes to severe clinical diseases worldwide and despite its prevalence an effective vaccine or treatment remains elusive. Numerous computational methods are being employed to target hypothetical proteins (HPs). Presently, no studies have predicted multi-epitope vaccines for these HPs.

View Article and Find Full Text PDF

The twenty-first century presents a serious threat to public health due to the growth in antibiotic resistance among opportunistic bacteria, particularly within the ESKAPE group, which includes Enterobacter species with high morbidity, mortality, virulence, and nosocomial dissemination rates. Enterobacter species, especially Enterobacter cloacae, bacteria have developed resistance to multiple antibiotics through mechanisms, such as continuous production of AmpC beta-lactamase. In this study, a comprehensive bioinformatics approach was employed to analyze the genome of Enterobacter cloacae, utilizing sequence data from GenBank (ID: OW968328.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuONPs) offer promising antimicrobial properties against a range of pathogens, addressing the urgent issue of antibiotic resistance. This study details the synthesis of glutamic acid-coated CuONPs (GA-CuONPs) and their functionalisation on medical-grade silicone tubing, using an oxysilane bonding agent. The resulting coating shows significant antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains, while remaining non-toxic to human cells and exhibiting stable adherence, without leaching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!