This study examines the potential anticancer properties of curcumin carbon nanodot-decorated chitosan nanoparticles (CCM@CD/CS-NP) in HepG2 hepatocellular carcinoma cells. CCM@CD/CS-NPs were synthesized, and their size, morphology, and elemental analysis were characterized. The combination of curcumin carbon dots and chitosan in the form of a nanoparticle has a number of benefits, including improved solubility and bioavailability of curcumin, enhanced stability and biocompatibility of carbon dots, and sustained release of the drug due to the mucoadhesive properties of chitosan. The purpose of this research was to examine the efficacy of curcumin carbon dot-decorated chitosan nanoparticles as an anticancer agent in the treatment of HepG2 cell lines. The cell proliferation and apoptosis-related gene expressions in HepG2 cells were assessed to investigate the potential use of nanoparticles in vitro. The IC50 value for the inhibitory effect of CCM@CD/CS-NPs on cell growth and proliferation was determined to be 323.61 μg/mL at 24 h and 267.73 μg/mL at 48 h. Increased caspase-3 and -9 activation shows that CCM@CD/CS-NPs promoted apoptosis in HepG2 cells. It was also shown that the overexpression of Bax and the downregulation of Bcl-2 were responsible for the apoptotic impact of CCM@CD/CS-NPs. The nanoparticles have been shown to have minimal toxicity to normal liver cells, indicating their potential as a safe and effective treatment for HepG2. These novel nanomaterials effectively suppressed tumor development and boosted the rate of apoptotic cell death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515349 | PMC |
http://dx.doi.org/10.1021/acsomega.3c03405 | DOI Listing |
Pharmaceuticals (Basel)
November 2024
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
Background: Curcuminoids, the bioactive compounds found in turmeric, exhibit potent antioxidant, anti-inflammatory, and neuroprotective properties. This study aims to enhance the extraction of curcuminoids from turmeric using environmentally friendly solvents supercritical CO (scCO) combined with natural deep eutectic solvents (NADESs) in one process, and to evaluate the resulting biological activity.
Methods: A Box-Behnken statistical design was applied to optimize scCO extraction conditions-pressure, CO volume, and temperature-to maximize curcuminoid yield.
J Control Release
December 2024
Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China. Electronic address:
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. The vicious circle between amyloid-β peptide (Aβ) overgeneration and microglial dysfunction is an important pathological event that promotes AD progression. However, therapeutic strategies toward only Aβ or microglial modulation still have many problems.
View Article and Find Full Text PDFPhytomedicine
December 2024
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens SurveillancePR China. Electronic address:
Background: Tigecycline is one of the few effective treatments for multidrug-resistant bacteria. However, the recent emergence and spread of high-level tigecycline resistance in Enterobacteriaceae have significantly limited its clinical use. To combat this challenge, combining antibiotics with adjuvants has emerged as a promising strategy.
View Article and Find Full Text PDFChemphyschem
December 2024
Indian Institute of Technology Jodhpur, Chemistry, NH65, Surpura bypass road, karwar, 342037, Jodhpur, INDIA.
To improve bioavailability, enhance the solubility and stability of the hydrophobic drug curcumin, nanoparticles such as carbon quantum dots (CQDs) are unique choices. In this study, we present a simple, cost-effective, and eco-friendly method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) and their application in the efficient delivery of hydrophobic drugs curcumin into live cancer cells. The N-CQDs produced in this study exhibit excellent water solubility, remarkable stability, and high biocompatibility.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
Creating an analytical probe to track extremely mutagenic picric acid (PA) is essential for human health and the environment. Here, we developed a straightforward and quick fluorescence analytical method utilizing 3-aminopropyltrimethoxysilane (3-APTMS)-functionalized curcumin carbon quantum dots (CQDs) for the fast and selective detection of PA. Solvothermal carbonization and functionalization of curcumin with 3-APTMS were used to create multifunctional CQDs, which were then characterized using UV-vis spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD), ζ-potential, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!