Background: The stability of molecular T2/non-T2 phenotypes remains uncertain. The objectives of this study were to assess the stability of these phenotypes and the correlation between serum periostin and asthma T2 phenotypes and endotypes.

Methods: Demographics, clinical data, and blood samples were collected. Patients diagnosed with moderate-to-severe asthma were classified into T2 or non-T2 according to previously defined thresholds of blood eosinophilia and serum total IgE levels. Asthma endotype was also determined. After at least 1 year of follow-up, the stability of T2 phenotypes and endotypes was assessed.

Results: A total of 53 patients (72% women), mean age 47 years (range 16-77), were included. In the initial and second evaluations, the T2 phenotype was found in 41.5% and 43.4% of patients and the non-T2 phenotype was found in 58.4% and 56.7%, respectively. The mean [standard deviation (SD), range] serum periostin level was 52.7 (26.2, 22.6-129.7) ng/mL in patients with T2 phenotype, and 39.3 (25.6, 7.7-104.) ng/mL in non-T2 patients ( = 0.063). Periostin levels correlated to endotypes ( = 0.001): 45.7 (27.9) ng/mL in allergic asthma ( = 16 patients), 64.7 (24.9) in aspirin-exacerbated respiratory disease ( = 14), 59.0 (27.6) ng/mL in late-onset eosinophilic asthma ( = 4), and 28.3 (13.3) ng/mL in non-eosinophilic asthma ( = 18).

Conclusions: T2 and non-T2 asthma phenotypes assessed by accessible methods in daily practice are stable over time yet widely heterogeneous. Serum periostin does not discriminate between T2 and non-T2 phenotypes. Nevertheless, its correlation to asthma endotypes may contribute to guide therapies targeting T2 cytokines in a more personalized approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515089PMC
http://dx.doi.org/10.3389/falgy.2023.1205115DOI Listing

Publication Analysis

Top Keywords

asthma phenotypes
12
serum periostin
12
stability phenotypes
8
phenotypes correlation
8
asthma
8
phenotypes
7
patients
6
periostin
5
non-t2
5
ng/ml
5

Similar Publications

Chronic Cough and Hyperpnea: Clinical Approach to Equine Asthma.

Vet Clin North Am Equine Pract

January 2025

Veterinary Medicine Cooperative Extension, Department of Population Health & Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA. Electronic address:

Exercise intolerance, chronic cough, and hyperpnea are the clinical hallmarks of equine asthma. Diagnosis of severe equine asthma in horses is multistep; determination of the phenotype will help guide future recommendations. Management of equine asthma is largely reduction/elimination of triggering agents/conditions.

View Article and Find Full Text PDF

Background: Allergic rhinitis (AR) is a common chronic respiratory disease that can lead to the development of various other conditions. Although genetic risk loci associated with AR have been reported, the connections between these loci and AR comorbidities or other diseases remain unclear.

Methods: This study conducted a phenome-wide association study (PheWAS) using known AR risk loci to explore the impact of known AR risk variants on a broad spectrum of phenotypes.

View Article and Find Full Text PDF

Background: The emergence of new molecular targeted drugs marks a breakthrough in asthma treatment, particularly for severe cases. Yet, options for moderate-to-severe asthma treatment remain limited, highlighting the urgent need for novel therapeutic drug targets. In this study, we aimed to identify new treatment targets for asthma using the Mendelian randomization method and large-scale genome-wide association data (GWAS).

View Article and Find Full Text PDF

Macrophages exhibit diverse phenotypes depending on environment status, which contribute to physiological and pathological processes of immunological diseases, including sepsis, asthma, multiple sclerosis and colitis. The alternative activation of macrophages is tightly regulated to avoid excessive activation and damage of tissues and organs. Certain works characterized that succinate dehydrogenase (SDH) altered function of macrophages and promoted inflammatory response in M1 macrophages via mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!