Fungi are an attractive food source for predators such as fungivorous nematodes. Several fungal defense proteins and their protective mechanisms against nematodes have been described. Many of these proteins are lectins which are stored in the cytoplasm of the fungal cells and bind to specific glycan epitopes in the digestive tract of the nematode upon ingestion. Here, we studied two novel nematotoxic proteins with lipase domains from the model mushroom . These cytoplasmically localized proteins were found to be induced in the vegetative mycelium of upon challenge with fungivorous nematode . The proteins showed nematotoxicity when heterologously expressed in and fed to several bacterivorous nematodes. Site-specific mutagenesis of predicted catalytic residues eliminated the lipase activity of the proteins and significantly reduced their nematotoxicity, indicating the importance of the lipase activity for the nematotoxicity of these proteins. Our results suggest that cytoplasmic lipases constitute a novel class of fungal defense proteins against predatory nematodes. These findings improve our understanding of fungal defense mechanisms against predators and may find applications in the control of parasitic nematodes in agriculture and medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512399PMC
http://dx.doi.org/10.3389/ffunb.2021.696972DOI Listing

Publication Analysis

Top Keywords

fungal defense
16
defense proteins
12
proteins
9
novel class
8
class fungal
8
lipase activity
8
nematodes
6
fungal
5
cytoplasmic lipases-a
4
lipases-a novel
4

Similar Publications

Background: The interplay of OGG1, 8-Oxoguanine, and oxidative stress triggers the exaggerated release of cytokines during malaria, which worsens the outcome of the disease. We aimed to investigate the involvement of OGG1 in malaria and assess the effect of modulating its activity on the cytokine environment and anemia during malaria in mice.

Methods: infection in ICR mice was used as a malaria model.

View Article and Find Full Text PDF

Roses () are among the most cherished ornamental plants globally, yet they are highly susceptible to infections by , the causative agent of gray mold disease. Here we inoculated the resistant rose variety 'Yellow Leisure Liness' with to investigate its resistance mechanisms against gray mold disease. Through transcriptome sequencing, we identified 578 differentially expressed genes (DEGs) that were significantly upregulated at 24, 48, and 72 hours post-inoculation, with these genes significantly enriched for three defense response-related GO terms.

View Article and Find Full Text PDF

Powdery mildew (PM), is a significant fungal disease that poses a considerable threat to global agricultural productivity. Autophagy and programmed cell death (PCD) are crucial plant defense responses against PM. However, the role of metacaspases (MCAs) in mediating the interplay between autophagy and PCD in wheat's resistance to PM remains unknown.

View Article and Find Full Text PDF

Effects of Saprolegnia parasitica on pathological damage and metabolism of Epithelioma papulosum cyprini cell.

Dev Comp Immunol

December 2024

National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China. Electronic address:

Saprolegniasis is a common fungal disease in aquaculture. It will form white flocculent hyphae on the skin of fish, and the hyphae may grow inward and penetrate into muscle tissue, which will reduce the immunity of the body and eventually lead to death. However, there are still some gaps in the mechanism of the fish body surface against the invasion of Saprolegnia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!