In this paper, we propose ways to address diversity, equity, and inclusion (DEI) challenges and outline steps and methodologies for creating allies and empowering leaders to support DEI efforts in science, technology, engineering, mathematics, and medicine (STEMM) for underrepresented minorities (URMs).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512845 | PMC |
http://dx.doi.org/10.1016/j.trechm.2023.02.007 | DOI Listing |
Heliyon
December 2024
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
The global population growth is driving up the demand for agricultural products, while traditional farming methods like those from the Green Revolution are becoming unsustainable due to climate change. To address these challenges and ensure agricultural sustainability, innovative techniques, such as nanotechnology, are essential to meet rising food demands and enhance agricultural sustainability. Nanotechnology, which promotes a more sustainable and resilient agricultural system while enhancing food security, is a key catalyst for the Agri-tech revolution.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China.
Electrochemical reduction of naturally abundant nitrogen (N) under ambient conditions is a promising method for ammonia (NH) synthesis, while the development of a highly active, stable and low-cost catalyst remains a challenge. Herein, the N reduction reaction of TM@g-BCN in electrochemical nitrogen reduction has been systematically investigated using density functional theory (DFT) calculations and compared with that of TM@g-CN. It was found that TM atoms are more stably anchored to g-BCN than to g-CN.
View Article and Find Full Text PDFChemSusChem
December 2024
Tongji University, Chemical Science and Engineering, 1239 Siping Road, 200092, Shanghai, CHINA.
Electrocatalytic biomass conversion using green electricity is regarded as an important strategy to meet the requirement of sustainable development. NiCo2O4 electrodes with different morphologies and electronic structures were fabricated by changing the precipitants used in the solvothermal process, and applied in the electrocatalytic 5-hydroxymethylfurfural oxidation (HMFOR). The experimental and theoretical calculation results showed NiCo2O4 nanosheets (NCO-Ns) with low Co/Ni ratio exhibited larger adsorption energy towards HMF and superior intrinsic catalytic activity in HMFOR, while NiCo2O4 nanoneedles (NCO-Nn) with larger electrochemical active surface areas presented faster electron transfer kinetics and enhanced catalytic performance for 50 mM HMF with a higher conversion rate (99.
View Article and Find Full Text PDFChemistry
December 2024
Lanzhou University, College of Chemistry and Chemical Engineering, Lanzhou Tianshui south street 222, 730000, Lanzhou, CHINA.
Dual single-atom catalysts have attracted considerable research interest due to their higher metal atom loading and more flexible active sites compared to single-atom catalysts (SACs). We pioneered the one-step synthesis of sheets copper-cobalt graphitic carbon nitride dual single-atom (S-Cu/Co-g-C3N4) using folding fan-shaped aluminum foil as a template, and used them as catalysts in the epoxidation of styrene respectively. Through XAFS(X-ray Absorption Fine Structure) and other characterizations, it is found that Cu and Co single atoms are stabilized separately on g-C3N4 via coordination with nitrogen (N), hindered the ordered growth of sheets, and formed more pore structures, which not only increased more catalytically active sites, but also effectively prevented the flakes re-aggregate during the catalytic process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Hunan University, College of Chemistry and Chemical Engineering, No.2 Lushan Southroad, 410000, Changsha, CHINA.
Electrocatalytic synthesis of high-value chemicals has been attracting growing interest owing to its environmentally benign reaction pathways. Among these processes, the electrocatalytic reduction of nitrate (NO3-) to ammonia (NH3), known as NO3RR, and the oxidation of 5-hydroxymethylfurfural (HMFOR) stand out as two cornerstone reactions; yet, their efficiency and selectivity pose ongoing challenges. In this study, we introduce a charge manipulation approach for the design of highly efficient electrocatalysts tailored for the simultaneous coupling of NO3RR and HMFOR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!