Effective light extraction from optically active solid-state spin centers inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centers in wider quantum systems. Here, we report increased fluorescent light collection efficiency from laser-written nitrogen-vacancy (NV) centers in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centers and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes toward future scalable systems development. The micro-lenses are integrated in a noninvasive manner, as they are added on top of the unstructured diamond surface and bonded by van der Waals forces. For emitters at 5 μm depth, we find approximately 2× improvement of fluorescent light collection using an air objective with a numerical aperture of NA = 0.95 in good agreement with simulations. Similarly, the solid immersion lenses strongly enhance light collection when using an objective with NA = 0.5, significantly improving the signal-to-noise ratio of the NV center emission while maintaining the NV's quantum properties after integration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515637PMC
http://dx.doi.org/10.1021/acsphotonics.3c00854DOI Listing

Publication Analysis

Top Keywords

solid immersion
12
immersion lenses
12
light collection
12
gan solid
8
fluorescent light
8
centers
5
additive gan
4
lenses enhanced
4
enhanced photon
4
photon extraction
4

Similar Publications

Preparation and evaluation of ozone micro-nano bubbles ice for Litchi precooling.

Food Chem

January 2025

Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Institute of Food Testing, Hainan Academy of Inspection and Testing, Haikou 570314, China. Electronic address:

Ozone (O) is an effective agent for post-harvest fruit preservation against diverse microorganisms. In this study, a cost-effective ozone micro-nano bubbles ice (O-MNBI) was prepared, characterized, and subsequently used to precool litchi. The optimal protocols for O-MNBI production were as follows: water (2 °C, pH = 7) was pumped into a micro-nano O bubble generator for 10 min aeration treatment.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Stable Air Plastron Prolongs Biofluid Repellency of Submerged Superhydrophobic Surfaces.

Langmuir

January 2025

School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.

Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.

View Article and Find Full Text PDF

The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.

View Article and Find Full Text PDF

Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!