Grape pomace, the main by-product of wine process, shows high potential for the development of functional foods, being a natural source of bioactive compounds and dietary fiber. Thus, the present study proposes the development of five potential functional biscuits. The five formulations were achieved by varying the Tannat grape pomace powder (TGP, 10-20% w/w total wet dough) and sweetener sucralose (2-4% w/w total wet dough) content through a factorial design with central points. TGP microbiological and pesticides analysis were performed as a food safety requirement. Identification of bioactive compounds by HPLC-DAD-MS, bioactivity (total phenol content, antioxidant by ABTS and ORAC-FL, antidiabetic and antiobesity by inhibition of α-glucosidase and pancreatic lipase, respectively) and sensory properties of the biscuits were evaluated. TGP microbiological and pesticides showed values within food safety criteria. Sensory profiles of TGP biscuits were obtained, showing biscuits with 20% TGP good sensory quality (7.3, scale 1-9) in a cluster of 37 out of 101 consumers. TGP addition in biscuits had a significant ( < 0.05) effect on total phenolic content (0.893-1.858 mg GAE/g biscuit) and bioactive properties when compared to controls: 11.467-50.491 and 4.342-50.912 μmol TE/g biscuit for ABTS and ORAC-FL, respectively; inhibition of α-glucosidase and pancreatic lipase, IC 35.572-64.268 and 7.197-47.135 mg/mL, respectively. HPLC-DAD-MS results showed all the identified phenolic compounds in 20/4% biscuit (TGP/sucralose%) were degraded during baking. Malvidin-3-O-(6'-p-coumaroyl) glucoside, (+)-catechin, malvidin-3-O-glucoside, and (-)-epicatechin were the main phenolic compounds (in descendent order of content) found. The bioactive properties could be attributed to the remaining phenolic compounds in the biscuits. In conclusion, TGP biscuits seemed to be a promising functional food with potential for ameliorating oxidative stress, glucose and fatty acids levels with good sensory quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513392 | PMC |
http://dx.doi.org/10.3389/fnut.2023.1241105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!