Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Bighead Carp currently threatens to invade the Laurentian Great Lakes from the Mississippi River, but the novel climatic conditions it will encounter by expanding northwards could affect its population performance. Bighead Carp in colder climates exhibits slower growth and matures later, with later maturation typically leading to larger adult size and increased fecundity and survival. Accordingly, the life-history strategies of Bighead Carp at its northern range limits could differ from those observed in its current invaded range. To explore how population performance could differ across changing environmental conditions, we used a stage- and age-based matrix population model parameterized with values reported for Bighead Carp populations around the world. The model was used to evaluate how different ages of maturity and their resulting impacts to body size, survival, and fecundity could impact rates of population growth and establishment. Age of maturity had a non-linear effect on population growth, with maturation at intermediate ages (4-6 years) resulting in better performance. However, performance differed less between maturation ages when fecundity was allowed to increase disproportionately with body size. Greater population growth at younger ages of maturity suggest that invasion at lower latitudes could enable establishment in fewer years due to faster rates of development in warmer temperatures. Across all maturation schedules, population growth was most sensitive to the recruitment of age-1 individuals and least sensitive to adult survival, and vital rates overall varied more in their contribution to population growth at younger ages of maturity. Thus, understanding the factors that control age-1 recruitment would inform projections of population performance for Bighead Carp in the Laurentian Great Lakes.
Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-023-03126-z.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514160 | PMC |
http://dx.doi.org/10.1007/s10530-023-03126-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!