A novel algorithm for calculation of Fourier and asymmetric units.

Acta Crystallogr A Found Adv

Department of Inorganic Chemistry, Faculty of Natural Sciences, Komensky University, Ilkovicova 6, Bratislava, 84215, Slovak Republic.

Published: November 2023

A new method is presented for determining asymmetric and Fourier units based on plane groups for all space groups. These units are specifically designed to improve the calculation of fast Fourier transforms compared with the units derived from asymmetric units in the International Tables for Crystallography, Vol. A. The algorithm can be easily implemented into existing crystallographic programs using a short computer code.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053273323007714DOI Listing

Publication Analysis

Top Keywords

asymmetric units
8
units
5
novel algorithm
4
algorithm calculation
4
calculation fourier
4
fourier asymmetric
4
units method
4
method presented
4
presented determining
4
determining asymmetric
4

Similar Publications

Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from PCC 7942 and PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in using a dual-plasmid co-expression system and characterized in both oxidized and reduced states.

View Article and Find Full Text PDF

Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and exhibit rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. This heterogeneity of charge and the structural complexity present significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore.

View Article and Find Full Text PDF

Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.

View Article and Find Full Text PDF

Electrically conductive coordination polymers (ECCPs), particularly those incorporating benzenehexathiol (BHT) ligands, are emerging as a distinctive class of electronic materials with tunable semiconducting and metallic properties. However, the exploration of novel ECCPs with low-symmetry structures and electrical anisotropy remains under development. Here, we report the on-water surface synthesis of a novel ECCP, namely CuBHT, which exhibits a low-symmetry structure and unique in-plane electrical anisotropy that differs from the well-known CuBHT phase.

View Article and Find Full Text PDF

Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!