Lateral root (LR) positioning and development rely on the dynamic interplay between auxin production, transport but also inactivation. Nonetheless, how the latter affects LR organogenesis remains largely uninvestigated. Here, we systematically analyze the impact of the major auxin inactivation pathway defined by GRETCHEN HAGEN3-type (GH3) auxin conjugating enzymes and DIOXYGENASE FOR AUXIN OXIDATION1 (DAO1) in all stages of LR development using reporters, genetics and inhibitors in Arabidopsis thaliana. Our data demonstrate that the gh3.1/2/3/4/5/6 hextuple (gh3hex) mutants display a higher LR density due to increased LR initiation and faster LR developmental progression, acting epistatically over dao1-1. Grafting and local inhibitor applications reveal that root and shoot GH3 activities control LR formation. The faster LR development in gh3hex is associated with GH3 expression domains in and around developing LRs. The increase in LR initiation is associated with accelerated auxin response oscillations coinciding with increases in apical meristem size and LR cap cell death rates. Our research reveals how GH3-mediated auxin inactivation attenuates LR development. Local GH3 expression in LR primordia attenuates development and emergence, whereas GH3 effects on pre-initiation stages are indirect, by modulating meristem activities that in turn coordinate root growth with LR spacing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19284 | DOI Listing |
Plant Biotechnol J
December 2024
State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China-IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
Enhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic.
N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SOH, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
November 2024
Department of Science, Technology and Innovation, Kobe University, Kobe, Japan.
Bacillus velezensis S141 helps soybean establish specific symbiosis with strains of Bradyrhizobium diazoefficiens to form larger nodules and improve nitrogen fixation efficiency. In this study, we found that the dry weight of soybean roots increased significantly in the presence of S141 alone under drought conditions. Hence, S141 improved the root growth of soybean under limited water supply conditions.
View Article and Find Full Text PDFPlant Cell
December 2024
College of Horticulture, China Agricultural University, Beijing 100193, China.
Anthocyanins affect quality in fruits such as grape (Vitis vinifera). High temperatures reduce anthocyanin levels by suppressing the expression of anthocyanin biosynthesis genes and decreasing the biosynthetic rate. However, the regulatory mechanisms that coordinate these 2 processes remain largely unknown.
View Article and Find Full Text PDFPostepy Biochem
September 2024
Zakład Biologii Rozwoju Roślin, Wydział Nauk Biologicznych, Uniwersytet Wrocławski.
Auxins are a phytohormones that regulates of processes related to plant growth and morphogenesis, therefore their deficiency or excess results in severe developmental disorders. Plants have developed mechanisms aimed at regulating the level of the active form of these hormones, including their: directional transport, local biosynthesis, and degradation, as well as reversible and irreversible inactivation by binding to additional chemical groups. Despite almost a hundred years since the discovery of auxins, the functioning of these mechanisms, especially at the level of metabolism, is still not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!