A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetic studies on acidic wet chemical etching of silicon in binary and ternary mixtures of HF, HNO and HSiF. | LitMetric

The etching of silicon with mixtures of hydrofluoric acid (HF), nitric acid (HNO) and hexafluorosilicic acid (HSiF) proceeds in a complex reaction scenario consisting of interacting side reactions. Almost no other dissolution reaction is so massively dependent on the reaction conditions that influence the etching rate and the mechanism of the individual reactions. Extensive studies of the reaction rate of silicon etching in binary and ternary acid mixtures have allowed the transition point between the reaction-controlled and diffusion-controlled reaction regimes to be determined as a function of the composition of the etching mixture. It was verified that the reaction mechanism for binary and ternary mixtures does not differ and only the lower water content in ternary mixtures favours an enhanced formation of the reactive N(III) intermediate HNO in side reactions. Based on the exact knowledge of the point of mechanism change, determination of the reaction rate under quasi-isothermal conditions in the bulk etching range allows, for the first time, deriving formal kinetic terms from the kinetic data to describe the dissolution rate in both the reaction-controlled and diffusion-controlled regimes. The formal kinetic terms were designed both for the kinetically correct quasi-isothermal approach to the dissolution rate in the Si bulk and for the application-oriented approach that includes induction phases and temperature increases in the considered dissolution period as well as influences of the surface properties. Moreover, by using the water content of the etching mixtures as a proxy variable, uniform calculation of the etching rates in HF/HNO as well as in HF/HNO/HSiF mixtures in the entire composition range of the application can be formulated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp03188hDOI Listing

Publication Analysis

Top Keywords

binary ternary
12
ternary mixtures
12
etching
8
etching silicon
8
side reactions
8
reaction rate
8
reaction-controlled diffusion-controlled
8
water content
8
formal kinetic
8
kinetic terms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!