Introduction: In the treatment scenario of PanNETs-targeted therapies are desired but limited, as rarity and heterogeneity on PanNETs pose limitations to their development.
Areas Covered: We performed a literature review searching for promising druggable biomarkers and potential treatments to be implemented in the next future. We focused on treatments which have already reached clinical experimentation, although in early phases. Six targets were identified, namely Hsp90, HIFa, HDACs, CDKs, uPAR, and DDR. Even though biological rational is strong, so far reported efficacy outcomes are quite disappointing. The reason of that should be searched in the patients' heterogeneity, lack of biomarker selection, poor knowledge of interfering mechanisms as well as difficulties in patients accrual. Moreover, different ways to assess treatment efficacy should be considered, other than response rate, in light of the more indolent nature of NETs.
Expert Opinion: Development of targeted treatments in PanNETs is still an uncovered area, far behind other more frequent cancers. Rarity of NETs led to accrual of unselected populations, possibly jeopardizing the drug efficacy. Better patients' selection, both in terms of topography, grading and biomarkers is crucial and will help understanding which role targeted therapies can really play in these tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17446651.2023.2248239 | DOI Listing |
Hereditas
January 2025
Obstetrics and Gynecology Medical Centre, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No.105, Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China.
Background: Cervical cancer (CC) is a prevalent gynecological malignancy, contributing to a substantial number of fatalities among women. MicroRNAs (miRNAs) have emerged as promising biomarkers with significant potential for the early detection and prognosis of CC.
Objective: This study aimed to explore the clinical significance and biological role of miR-615-5p in CC, with the goal of identifying novel biomarkers for this disease.
J Transl Med
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Metabolic reprogramming within the tumor microenvironment (TME) is a hallmark of cancer and a crucial determinant of tumor progression. Research indicates that various metabolic regulators form a metabolic network in the TME and interact with immune cells, coordinating the tumor immune response. Metabolic dysregulation creates an immunosuppressive TME, impairing the antitumor immune response.
View Article and Find Full Text PDFArthritis Res Ther
January 2025
Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, tissue damage, and fibrosis, significantly affecting the quality of life. While there are currently some effective treatments available, they often come with side effects. There is an urgent need to find new treatments that can further improve therapeutic outcomes and reduce side effects.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!