A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advancing polytrauma care: developing and validating machine learning models for early mortality prediction. | LitMetric

Advancing polytrauma care: developing and validating machine learning models for early mortality prediction.

J Transl Med

Department of Orthopedics, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No. 100, Minjiang Avenue, Quzhou, 324000, Zhejiang, China.

Published: September 2023

Background: Rapid identification of high-risk polytrauma patients is crucial for early intervention and improved outcomes. This study aimed to develop and validate machine learning models for predicting 72 h mortality in adult polytrauma patients using readily available clinical parameters.

Methods: A retrospective analysis was conducted on polytrauma patients from the Dryad database and our institution. Missing values pertinent to eligible individuals within the Dryad database were compensated for through the k-nearest neighbor algorithm, subsequently randomizing them into training and internal validation factions on a 7:3 ratio. The patients of our institution functioned as external validation cohorts. The predictive efficacy of random forest (RF), neural network, and XGBoost models was assessed through an exhaustive suite of performance indicators. The SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) methods were engaged to explain the supreme-performing model. Conclusively, restricted cubic spline analysis and multivariate logistic regression were employed as sensitivity analyses to verify the robustness of the findings.

Results: Parameters including age, body mass index, Glasgow Coma Scale, Injury Severity Score, pH, base excess, and lactate emerged as pivotal predictors of 72 h mortality. The RF model exhibited unparalleled performance, boasting an area under the receiver operating characteristic curve (AUROC) of 0.87 (95% confidence interval [CI] 0.84-0.89), an area under the precision-recall curve (AUPRC) of 0.67 (95% CI 0.61-0.73), and an accuracy of 0.83 (95% CI 0.81-0.86) in the internal validation cohort, paralleled by an AUROC of 0.98 (95% CI 0.97-0.99), an AUPRC of 0.88 (95% CI 0.83-0.93), and an accuracy of 0.97 (95% CI 0.96-0.98) in the external validation cohort. It provided the highest net benefit in the decision curve analysis in relation to the other models. The outcomes of the sensitivity examinations were congruent with those inferred from SHAP and LIME.

Conclusions: The RF model exhibited the best performance in predicting 72 h mortality in adult polytrauma patients and has the potential to aid clinicians in identifying high-risk patients and guiding clinical decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518974PMC
http://dx.doi.org/10.1186/s12967-023-04487-8DOI Listing

Publication Analysis

Top Keywords

polytrauma patients
16
72 h mortality
12
machine learning
8
learning models
8
predicting 72 h
8
mortality adult
8
adult polytrauma
8
dryad database
8
internal validation
8
external validation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!