The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2023.104012DOI Listing

Publication Analysis

Top Keywords

chemosensory proteins
8
hemilepistus reaumurii
8
arthropod clades
8
proteins
5
proteins putative
4
putative semiochemical
4
semiochemical carriers
4
carriers desert
4
desert isopod
4
isopod hemilepistus
4

Similar Publications

Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.

View Article and Find Full Text PDF

Aberrant Positions of the Chemosensory Neurons in the Neurotransmitter-Release Mutant .

Int J Mol Sci

December 2024

Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.

Secretion of neurotransmitter- and neuropeptide-containing vesicles is a regulated process orchestrated by multiple proteins. Of these, mutants, defective in the and genes, responsible for neurotransmitter and neuropeptide release, respectively, are routinely used to elucidate neural and circuitry functions. While these mutants result in severe functional deficits, their neuroanatomy is assumed to be intact.

View Article and Find Full Text PDF

Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium.

View Article and Find Full Text PDF

Olfactory inputs regulate Drosophila melanogaster oogenesis.

J Exp Biol

December 2024

Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.

Drosophila female germline development and maintenance require both local stem cell niche signaling and systemic regulation. Here, we show the indispensable function of the Drosophila melanogaster olfactory circuit in normal oogenesis and fecundity. Lack of olfactory inputs during development causes a reduction in germline stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!