The role of death-associated protein kinase1 (DAPK1) in post-stroke functional recovery is controversial, as is its mechanism of action and any neural remodeling effect after ischemia. To assess the debatable role of DAPK1, we established the middle cerebral artery occlusion (MCAo) model in DAPK1 knockout mice and Sprague-Dawley (SD) rats. We identified that the genetic deletion of the DAPK1 as well as pharmacological inhibition of DAPK1 showed reduced brain infarct volume and neurological deficit. We report that DAPK1 inhibition (DI) reduces post-stroke neuronal death by inhibiting BAX/BCL2 and LC3/Beclin1 mediated apoptosis and autophagy, respectively. Histological analysis displayed a reduction in nuclear condensation, neuronal dissociation, and degraded cytoplasm in the DI group. The DI treatment showed enhanced dendrite spine density and neurite outgrowth, upregulated neural proliferation marker proteins like brain-derived neurotrophic factor, and reduced structural abnormalities of the cortical pyramidal neurons. This research shows that DAPK1 drives cell death, its activation exacerbates functional recovery after cerebral ischemia and shows that oxazolone-based DI could be an excellent candidate for stroke and ischemic injury intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2023.148588 | DOI Listing |
Sci Rep
December 2024
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).
View Article and Find Full Text PDFSci Rep
December 2024
Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).
View Article and Find Full Text PDFNat Commun
December 2024
KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.
The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Antibody-mediated protection against pathogens is crucial to a healthy life. However, the recent SARS-CoV-2 pandemic has shown that pre-existing comorbid conditions including kidney disease account for compromised humoral immunity to infections. Individuals with kidney disease are not only susceptible to infections but also exhibit poor vaccine-induced antibody response.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!