The hypoxia-inducible factor (HIF) is a master regulator of the cellular transcriptional response to hypoxia. While the oxygen-sensitive regulation of HIF-1α subunit stability via the ubiquitin-proteasome pathway has been well described, less is known about how other oxygen-independent post-translational modifications impact the HIF pathway. SUMOylation, the attachment of SUMO (small ubiquitin-like modifier) proteins to a target protein, regulates the HIF pathway, although the impact of SUMO on HIF activity remains controversial. Here, we examined the effects of SUMOylation on the expression pattern of HIF-1α in response to pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) in intestinal epithelial cells. We evaluated the effects of SUMO-1, SUMO-2, and SUMO-3 overexpression and inhibition of SUMOylation using a novel selective inhibitor of the SUMO pathway, TAK-981, on the sensitivity of HIF-1α in Caco-2 intestinal epithelial cells. Our findings demonstrate that treatment with TAK-981 decreases global SUMO-1 and SUMO-2/3 modification and enhances HIF-1α protein levels, whereas SUMO-1 and SUMO-2/3 overexpression results in decreased HIF-1α protein levels in response to DMOG. Reporter assay analysis demonstrates reduced HIF-1α transcriptional activity in cells overexpressing SUMO-1 and SUMO-2/3, whereas pretreatment with TAK-981 increased HIF-1α transcriptional activity in response to DMOG. In addition, HIF-1α nuclear accumulation was decreased in cells overexpressing SUMO-1. Importantly, we showed that HIF-1α is not directly SUMOylated, but that SUMOylation affects HIF-1α stability and activity indirectly. Taken together, our results indicate that SUMOylation indirectly suppresses HIF-1α protein stability, transcriptional activity, and nuclear accumulation in intestinal epithelial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616383 | PMC |
http://dx.doi.org/10.1016/j.jbc.2023.105280 | DOI Listing |
J Med Food
January 2025
Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain.
Recent studies show that inorganic arsenic (As) exerts a toxic effect on the intestinal epithelium, causing a significant increase in its permeability. This disruption of the epithelial barrier may favor the entry of contaminants or toxins into the systemic circulation, thus causing toxicity not only at the intestinal level but possibly also at the systemic level. The present study conducts an evaluation of the protective effect of various dietary supplements and plant extracts against the intestinal toxicity of inorganic As.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany.
Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Irinotecan (CPT11) chemotherapy-induced diarrhea affects a substantial cancer population due to -glucuronidase (Gus) converting 10--glucuronyl-7-ethyl-10-hydroxycamptothecin (SN38G) to toxic 7-ethyl-10-hydroxycamptothecin (SN38). Existing interventions primarily address inflammation and Gus enzyme inhibition, neglecting epithelial repair and Gus-expressing bacteria. Herein, we discovered that dehydrodiisoeugenol (DDIE), isolated from nutmeg, alleviates CPT11-induced intestinal mucositis alongside a synergistic antitumor effect with CPT11 by improving weight loss, colon shortening, epithelial barrier dysfunction, goblet cells and intestinal stem cells (ISCs) loss, and wound-healing.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!