Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For the fatigue reliability analysis of aeroengine blade-disc systems, the traditional direct integral modelling methods or separate independent modelling methods will lead to low computational efficiency or accuracy. In this work, a physics-informed ensemble learning (PIEL) method is proposed, i.e. firstly, based on the physical characteristics of blade-disc systems, the complex multi-component reliability analysis is split into a series of single-component reliability analyses; moreover, the PIEL model is established by introducing the mapping of multiple constitutive responses and the multi-material physical characteristics into the ensemble learning; finally, the PIEL-based system reliability framework is established by quantifying the failure correlation with the Copula function. The reliability analysis of a typical aeroengine high-pressure turbine blade-disc system is regarded as an example to verify the effectiveness of the proposed method. Compared with the direct Monte Carlo, support vector regression, neural network, ensemble learning and physics-informed neural network, the proposed method exhibits the highest computing accuracy and efficiency, and is validated to be an efficient method for the reliability analysis of blade-disc systems. The current work can provide a novel insight for physics-informed modelling and fatigue reliability analyses. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2022.0384 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!