Objective: To evaluate the level of oxidative stress and antioxidative response in the transplanted liver and its role in acute cellular rejection (ACR). Particular attention was paid to ACR diagnosis in patients with hepatitis C (HCV), as histopathological features of ACR and viral disease recurrence overlap.

Methods: This retrospective study included 40 liver transplant patients who underwent liver transplantation with two consecutive liver biopsies performed during one hospitalization period: 1.) initial biopsy of the donor liver (before implantation) and 2.) indication biopsy (after suspected ACR). Based on the etiology, patients were divided into two groups: 22 patients with alcoholic liver cirrhosis (EtOH group) and 18 patients with hepatitis C cirrhosis (HCV group). We analyzed the presence of acrolein, HNE (4-hydroxynonenal), and the major antioxidant transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) in both biopsies.

Results: The presence of acrolein and HNE in both biopsies indicates increased oxidative stress, while the decrease in these aldehydes in the indication biopsies indicates a decrease in oxidative stress over time, reflecting liver graft recovery. The absence of NRF2 in both biopsies reflects significantly reduced antioxidant protection in patients undergoing liver transplantation.

Conclusion: The results support the role of oxidative stress in the pathogenesis of ACR. The presence of acrolein and the absence of HNE in the indication biopsy in patients with ACR could contribute to the diagnosis of ACR in clinical practice when functional antibodies are tested in the clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2023.154826DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
presence acrolein
12
liver
9
acute cellular
8
cellular rejection
8
liver transplant
8
patients hepatitis
8
indication biopsy
8
acrolein hne
8
biopsies indicates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!