Introduction: Atherosclerosis is prevalent globally, closely associated with dyslipidemia and other metabolic dysfunction. Early diagnosis of atherosclerosis is challenging due to limited diagnostic capabilities that need to be expanded with animal models with enhanced vascular biology like rats. Our previous research showed [111In] In-DANBIRT has potential as a diagnostic tool for detecting atherosclerosis in mice. The primary aim of the present study is to evaluate [111In] In-DANBIRT in a novel atherosclerotic rat with early- and late-stage atherosclerosis and metabolic disease.
Methods: We characterized metabolic and body composition differences in these novel dyslipidemic rats under different diets using serum chemistry and dual-energy X-ray absorptiometry (DEXA) scan, respectively. We performed 1-h post-injection in vivo molecular imaging of ApoE knockout, lean Zucker (LZ) male rats at baseline and followed them into 10 weeks of either normal or high-fat/cholesterol diet implementation (22 weeks of age).
Results: We identified significant differences in body composition and metabolic changes in ApoE knockout rats compared to ApoE wildtype rats. Our findings indicate an increased uptake of [111In] In-DANBIRT in ApoE knockout, lean Zucker (LZ) rats, particularly in the descending aorta, a location where early-stage atherosclerosis is commonly found. Our findings, however, also revealed that the ApoE knockout, Zucker diabetic fatty (ZDF) model has high mortality rate, which may be attributed to alterations of critical enzymes involved in regulating metabolism and liver function.
Conclusion: Our results are highly encouraging as they demonstrated the potential of [111In] In-DANBIRT to detect early-stage atherosclerosis in rats that might otherwise go unnoticed by other methods, showcasing the high sensitivity of [111In] In-DANBIRT. Our future studies will aim to establish a viable T2D atherosclerosis model in rats with more advanced stages of the disease to further demonstrate the reliability of [111In] In-DANBIRT as a diagnostic tool for patients in all stages of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12149-023-01868-3 | DOI Listing |
Ann Nucl Med
November 2023
Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
Introduction: Atherosclerosis is prevalent globally, closely associated with dyslipidemia and other metabolic dysfunction. Early diagnosis of atherosclerosis is challenging due to limited diagnostic capabilities that need to be expanded with animal models with enhanced vascular biology like rats. Our previous research showed [111In] In-DANBIRT has potential as a diagnostic tool for detecting atherosclerosis in mice.
View Article and Find Full Text PDFJ Nucl Cardiol
October 2022
Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
Background: Calcification and inflammation are atherosclerotic plaque compositional biomarkers that have both been linked to stroke risk. The aim of this study was to evaluate their co-existing prevalence in human carotid plaques with respect to plaque phenotype to determine the value of hybrid imaging for the detection of these biomarkers.
Methods: Human carotid plaque segments, obtained from endarterectomy, were incubated in [111In]In-DOTA-butylamino-NorBIRT ([111In]In-Danbirt), targeting Leukocyte Function-associated Antigen-1 (LFA-1) on leukocytes.
EJNMMI Res
March 2021
Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
Purpose: Many radioligands have been developed for the visualization of atherosclerosis by targeting inflammation. However, interpretation of in vivo signals is often limited to plaque identification. We evaluated binding of some promising radioligands in an in vitro approach in atherosclerotic plaques with different phenotypes.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
November 2020
Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.
Purpose: Atherosclerotic plaque development and progression signifies a complex inflammatory disease mediated by a multitude of proinflammatory leukocyte subsets. Using single photon emission computed tomography (SPECT) coupled with computed tomography (CT), this study tested a new dual-isotope acquisition protocol to assess each radiotracer's capability to identify plaque phenotype and inflammation levels pertaining to leukocytes expressing leukocyte function-associated antigen-1 (LFA-1) and the leukocyte subset of proinflammatory macrophages expressing somatostatin receptor subtype-2 (SST). Individual radiotracer uptake was quantified and the presence of corresponding immunohistological cell markers was assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!