Pro-preadipocytes are adipocyte progenitor cells within subcutaneous adipose tissue that are conserved in human adipose tissue with distinct cellular energetics. Here, we detail a protocol to quantify cellular oxygen consumption rates of primary human cells harvested from adipose tissue. We describe steps for primary cell expansion, cell seeding, transfection, differentiation, and respirometry followed by Agilent Seahorse Analytics. The measurement of bioenergetic profiles and resulting data further expand our knowledge of the functional properties of primary cells isolated from adipose tissue. For complete details on the use and execution of this protocol, please refer to Chen et al. (2023)..
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751552 | PMC |
http://dx.doi.org/10.1016/j.xpro.2023.102607 | DOI Listing |
Cancer Epidemiol Biomarkers Prev
January 2025
University of Alabama at Birmingham, Birmingham, AL, United States.
Background: The association between skeletal muscle and adipose tissue (body composition) and early response using positron emission tomography (PET) in pediatric Hodgkin lymphoma (HL) remains unstudied.
Methods: Patients enrolled on Children's Oncology Group studies AHOD0031 (intermediate-risk HL) and AHOD0831 (high-risk HL) with digital abdominal computed tomography (CT) scans at diagnosis and PET scans after 2 cycles (PET2) were included. Two consecutive slices at the third lumbar vertebra were identified and skeletal muscle index (SMI, in cm2/m2) and total adipose tissue index (TATI, in cm2/m2) were calculated using sliceOmatic (Magog, Canada) and height at diagnosis.
Dynamic definition liposculpture (HD2) is considered a highly sought after procedure in body sculpting surgery by patients. Radiofrequency microneedling is a cutting edge technology with evidence-based outcomes demonstrating skin tightening and retraction. These ancillary procedures complement and enhance the results of dynamic definition liposculpture.
View Article and Find Full Text PDFJACC Adv
December 2024
Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
Background: Risk stratification for sudden cardiac death (SCD) in patients with nonischemic cardiomyopathy (NICM) remains challenging.
Objectives: This study aimed to investigate the impact of epicardial adipose tissue (EAT) on SCD in NICM patients.
Methods: Our study cohort included 173 consecutive patients (age 53 ± 14 years, 73% men) scheduled for primary prevention implantable cardioverter-defibrillators (ICDs) implantation who underwent preimplant cardiovascular magnetic resonance.
J Spine Surg
December 2024
Department of Neurosurgery, General Hospital Bamberg, Bamberg, Germany.
Background: Surgical treatment of therapy-resistant radiculopathy associated with lumbar herniated discs in patients with extreme obesity is a challenge for neurosurgeons. In addition to technical problems in surgery due to the abundant subcutaneous adipose tissue and perioperative risks, there are significant anesthetic risks when anesthesia is performed with a patient in the prone position. A surgical procedure should preferably be minimally traumatic and quick with minimal risks of complications.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!